Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Modeling The Influence Of Vibration On Flow Through Embedded Microchannels, Joseph S. Seamons Dec 2023

Modeling The Influence Of Vibration On Flow Through Embedded Microchannels, Joseph S. Seamons

Theses and Dissertations

The influence of vocal fold (VF) vibration on perfused flow through VF vasculature is an area of research that has previously received limited attention. The aim of the research presented in this thesis was to contribute towards an improved understanding of the effects vibration on perfusion through vasculature within the VFs. This was done using a series of computational simulations of geometric changes to, and perfusion through, microchannels embedded in VF models. A computational structural model based on synthetic VF models used in previous experimental studies was first developed. The model and its embedded microchannel were initially studied under static …


Experiments And Simulations Of Liquid Mass Gauging And Slosh Dynamics In Microgravity, Jedediah Morse Storey Dec 2023

Experiments And Simulations Of Liquid Mass Gauging And Slosh Dynamics In Microgravity, Jedediah Morse Storey

Theses and Dissertations

Advancements in liquid propellant management science and technologies are key to increasing safety, decreasing cost, and increasing payload mass of space missions. Propellant usually comprises a large portion of the total mass of launch vehicles and spacecraft, so liquid propellant sensing, as well as predicting and controlling the motion of it, are important. Electrical Capacitance Tomography (ECT) is an emerging sensing technology that is capable of measuring the distribution of liquid anywhere inside of a tank, potentially making it useful for measuring slosh and gauging mass. An ECT-instrumented tank was successfully tested in microgravity for the first time. Basics of …


Capillary-Sealing Efficiency Of Mica-Proxy Caprock For Co2/H2 Geologic Storage In The Presence Of Organic Acids And Nanofluids, Amer Alanazi, Muhammad Ali, Mahmoud Mowafi, Saleh Bawazeer, Ziyad K K. Kaidar, Hussein Hoteit Dec 2023

Capillary-Sealing Efficiency Of Mica-Proxy Caprock For Co2/H2 Geologic Storage In The Presence Of Organic Acids And Nanofluids, Amer Alanazi, Muhammad Ali, Mahmoud Mowafi, Saleh Bawazeer, Ziyad K K. Kaidar, Hussein Hoteit

Research outputs 2022 to 2026

Toward a diversified low-carbon future, the geological storage of carbon dioxide (CO2) and hydrogen (H2) is regarded as a key enabler for an industrial-scale implementation. However, many geological formations, such as depleted oil and gas reservoirs, can contain inherent traces of organic molecules that dramatically affect their storage capacities and caprock sealing efficiency. Hence, using the right analysis to accurately determine the caprock sealing efficiency and storage capacity in the presence of organics is crucial for a secure and safe storage process. This study analyzed the sealing potential of a proxy caprock (mica) by calculating the capillary entry pressure and …


Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal Jan 2023

Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal

Mechanical & Aerospace Engineering Faculty Publications

This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …


Fugacity-Based Lattice Boltzmann Method For Multicomponent Multiphase Systems, Muzammil Soomro, Luis F. Ayala, Cheng Peng, Orlando M. Ayala Jan 2023

Fugacity-Based Lattice Boltzmann Method For Multicomponent Multiphase Systems, Muzammil Soomro, Luis F. Ayala, Cheng Peng, Orlando M. Ayala

Engineering Technology Faculty Publications

The free-energy model can extend the lattice Boltzmann method to multiphase systems. However, there is a lack of models capable of simulating multicomponent multiphase fluids with partial miscibility. In addition, existing models cannot be generalized to honor thermodynamic information provided by any multicomponent equation of state of choice. In this paper, we introduce a free-energy lattice Boltzmann model where the forcing term is determined by the fugacity of the species, the thermodynamic property that connects species partial pressure to chemical potential calculations. By doing so, we are able to carry out multicomponent multiphase simulations of partially miscible fluids and generalize …


Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu Jan 2023

Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu

Mathematics & Statistics Faculty Publications

Attempts to reduce jet noise began some 70 years ago. In the literature, there have been many publications written on this topic. By now, it is common knowledge that jet noise consists of a number of components. They possess different spectral and radiation characteristics and are generated by different mechanisms. It appears then that one may aim at the suppression of the noise of a single component instead of trying to reduce jet noise overall. The objective of the present project is to reduce large turbulence structures noise. It is the most dominant noise component radiating in the downstream direction. …


Experimental And Numerical Studies On The Projective Dye Visualization Velocimetry In A Squared Vertical Tube, Mark Bradley Johnson Jan 2023

Experimental And Numerical Studies On The Projective Dye Visualization Velocimetry In A Squared Vertical Tube, Mark Bradley Johnson

Browse all Theses and Dissertations

In fluid flow experiments, there have been numerous techniques developed over the years to measure velocity. Most popular techniques are non-intrusive such as particle image velocimetry (PIV), but these techniques are not suitable for all applications. For instance, PIV cannot be used in examining in-vivo measurements since the laser is not able to penetrate through the patient, which is why medical applications typically use X-rays. However, the images obtained from X-rays, in particular digital subtraction angiography, are projective images which compress 3D flow features onto a 2D image. Therefore, when intensity techniques, such as optical flow method (OFM), are applied …