Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

Electrochemistry

Discipline
Institution
Publication
Publication Type

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Electroanalytical Measurements Of Oxide Ions In Molten Cacl2 On W Electrode, Devin Rappleye, Chao Zhang, Art Nelson, Scott Simpson, Michael Simpson Sep 2021

Electroanalytical Measurements Of Oxide Ions In Molten Cacl2 On W Electrode, Devin Rappleye, Chao Zhang, Art Nelson, Scott Simpson, Michael Simpson

Faculty Publications

The electrochemical interaction of oxide ions with tungsten electrodes in molten calcium chloride (CaCl2) was analyzed by combining electroanalytical techniques with X-ray photoelectron spectroscopy. During a cyclic voltammetry (CV) scan, the oxide ions appear to interact with the tungsten working electrode via a multi-step oxidation and reduction process. The overall redox peaks behave reversibly up to 750 mV/s. This electrochemical process enables the oxide ion concentration to be correlated to CV oxidation peaks. The resulting correlation agrees well (8.8% difference) with back titration measurements and can be used to monitor oxide content in the salt in real-time during …


The Study Of Copper Corrosion Mechanisms Using Electrochemical Experimental Techniques., Evan Grimm Aug 2021

The Study Of Copper Corrosion Mechanisms Using Electrochemical Experimental Techniques., Evan Grimm

Electronic Theses and Dissertations

The purpose of this study was to discover and thoroughly explain the corrosion mechanisms of copper in saltwater, tap water and deionized water, and to apply these methods and findings when testing the corrosion mechanisms of other materials. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, and Tafel analysis.

The copper was found to corrode at a greater rate in saltwater, followed by tap water then deionized water, with a larger difference between saltwater and tap water than between tap water and deionized water. Each reaction was found to be both kinetically …


Modified Electrode Surfaces With Hydrogen Evolution Reaction Catalysts Derived From Electropolymerized Complexes With Redox Active Ligands., Amanda Mae Arts Aug 2021

Modified Electrode Surfaces With Hydrogen Evolution Reaction Catalysts Derived From Electropolymerized Complexes With Redox Active Ligands., Amanda Mae Arts

Electronic Theses and Dissertations

The demand for energy is growing exponentially, and to keep up with these demands new technologies for renewable energy have received increased attention. Hydrogen is one of the most promising energy sources for the future and plays a vital role in water electrolysis and fuel cells, as the hydrogen evolution reaction (HER) is the main step in the water splitting process. To increase the reaction rate and improve efficiency for the water electrolysis, catalysts are used to minimize the overpotential.

Most of the current electrocatalysts for HER are heterogeneous in nature and are dominated by platinum and other precious metals …


Investigation Of Single, Binary, And Ternary Metal Oxides Of Iridium, Rhodium, And Palladium For Neural Interfacing Applications, Gregory Vincent Taylor Jun 2021

Investigation Of Single, Binary, And Ternary Metal Oxides Of Iridium, Rhodium, And Palladium For Neural Interfacing Applications, Gregory Vincent Taylor

Theses and Dissertations

In this dissertation, thin film single, binary, and ternary metal oxides of iridium (Ir), ruthenium (Ru), rhodium (Rh), and palladium (Pd) were synthesized for use as electrode/microelectrode coatings for neural interfacing applications using DC reactive magnetron sputtering. Synthesis conditions which enhanced the electrochemical properties of films as measured by cyclic voltammetry and electrochemical impedance spectroscopy in a phosphate buffered saline solution of the single metal oxides were identified to be 30 mTorr working pressure, 20% oxygen partial pressure, and cathode power densities ≤ 4.9 W/cm2. These parameters were then used to develop the binary and ternary metal oxide …


Novel Coating Methods On Centrifugally-Spun Polymer Fibers For Applications In Lithium-Ion Batteries, Jonathan G. Ayala May 2021

Novel Coating Methods On Centrifugally-Spun Polymer Fibers For Applications In Lithium-Ion Batteries, Jonathan G. Ayala

Theses and Dissertations

The work presented in this thesis focuses on the processing, characterization, and electrochemical results of centrifugally spun composite carbon fiber electrodes for application as anode material in lithium-ion batteries. The work is presented as a compilation of two major projects. First, the use of novel Co3O4 wet coatings to increase the capacity of carbon fibers produced from Polyacrylonitrile (PAN). In this work, PAN fibers are produced via the Forcespinning method, and were heat treated by oxidation in air at 200 °C for four hours, and subsequent carbonization at 600 °C for six hours. The electrochemical performance of the Co3O4/C composite-fiber …


Centrifugally-Spun Ceramic/Carbon Composite Fibers And Their Use As Anode Materials In Li-Ion Batteries, Gabriel Gonzalez May 2021

Centrifugally-Spun Ceramic/Carbon Composite Fibers And Their Use As Anode Materials In Li-Ion Batteries, Gabriel Gonzalez

Theses and Dissertations

The work in this thesis focuses in the study of Centrifugally Spun Short Fiber Composites and their Implementation as Alternate Anode Material in Li-Ion Batteries. Due to their high theoretical capacity, abundance, and environmental friendliness, metal oxides have been widely studied as alternate anode materials for lithium ion batteries (LIBs). In this research work, the processing of SnO2 and SnO2/TiO2 ceramic short fibers as well as flexible and porous metal oxide carbon fibers (FPMOCFs) by centrifugal spinning followed by an optimized coating technique is reported. In addition, the electrochemical performance of the composites was also investigated and is provided.


The Controlled Synthesis Of Hydrogen Electrocatalysts For Alkaline Exchange Membrane Fuel Cell And Electrolysis Applications Via Chemical Vapor Deposition, Stefan Thurston Dubard Williams May 2021

The Controlled Synthesis Of Hydrogen Electrocatalysts For Alkaline Exchange Membrane Fuel Cell And Electrolysis Applications Via Chemical Vapor Deposition, Stefan Thurston Dubard Williams

Doctoral Dissertations

The development of catalysts for the electrochemical processes of hydrogen systems (e.g., fuel cells and electrolyzer systems) continues to be an attractive area of research for renewable energy technologies. One significant challenge has been developing hydrogen catalysts suitable for alkaline environments, mainly due to the sluggish kinetics of hydrogen reactions. In alkaline environments, the kinetics are decreased by two orders of magnitude when compared to acidic environments. Chemical vapor deposition (CVD) is a conventional method used to synthesize these types of catalysts. This effort discusses extending work being done using a modified CVD process known as “Poor Man’s” CVD (PMCVD) …


Mitigating Corrosion And Enhancing Energy Density Of Zinc-Based Anodes In Primary And Secondary Aqueous Batteries, Ehsan Faegh Apr 2021

Mitigating Corrosion And Enhancing Energy Density Of Zinc-Based Anodes In Primary And Secondary Aqueous Batteries, Ehsan Faegh

Theses and Dissertations

Today Lithium-ion (Li-ion) batteries are the most-emphasized battery technology among the many different battery systems in the market. However, due to their high cost (especially for electric vehicle applications), flammability and toxicity, the development of inexpensive and safer alternative battery chemistries has been the focus of a significant amount of recent research. Among various battery chemistries, Aluminum-based (Al-based) and Zinc-based (Zn-based) batteries have been touted as promising options to compete with Li-ion batteries. However, the practical realization of Al battery chemistries has been difficult over a long period of time (170 years) due to a number of fundamental and intrinsic …


Thermoelectric Generation And Thermophysical Properties Of Metal Oxide Nanofluids, Xinran Hou, Rong-Tsu Wang, Shaowen Huang, Jung-Chang Wang Mar 2021

Thermoelectric Generation And Thermophysical Properties Of Metal Oxide Nanofluids, Xinran Hou, Rong-Tsu Wang, Shaowen Huang, Jung-Chang Wang

Journal of Marine Science and Technology

This study describes the comprehensive characterization of the diverse water-based nanofluids involving aluminum oxide, titanium dioxide, and zinc oxide nanoparticles, which were prepared through the two-step synthesis method assisted by a microemulsion ultrasound skill with effects of both weight-percent concentration (wt.%) in the range of 1.0% and 5.0% and between 20 oC and 40 0C. The mean cluster size, zeta potential, pH value, viscosity, thermal conductivity, absorbance, light absorption, and electrical charge density of the various nanofluids were surveyed by relative experiments. The results showed that the 2 wt.% Al2O3, 2 wt.% TiO2 …


Alternative View Of Oxygen Reduction On Porous Carbon Electrocatalysts: The Substance Of Complex Oxygen-Surface Interactions, Giacomo De Falco, Marc Florent, Jacek Jagiello, Yongqiang Cheng, Luke L. Daemen, Anibal J. Ramirez-Cuesta, Teresa J. Bandosz Mar 2021

Alternative View Of Oxygen Reduction On Porous Carbon Electrocatalysts: The Substance Of Complex Oxygen-Surface Interactions, Giacomo De Falco, Marc Florent, Jacek Jagiello, Yongqiang Cheng, Luke L. Daemen, Anibal J. Ramirez-Cuesta, Teresa J. Bandosz

Publications and Research

Electrochemical oxygen reduction reaction (ORR) is an important energy-related process requiring alternative catalysts to expensive platinum-based ones. Although recently some advancements in carbon catalysts have been reported, there is still a lack of understanding which surface features might enhance their efficiency for ORR. Through a detailed study of oxygen adsorption on carbon molecular sieves and using inelastic neutron scattering, we demonstrated here that the extent of oxygen adsorption/interactions with surface is an important parameter affecting ORR. It was found that both the strength of O2 physical adsorption in small pores and its specific interactions with surface ether functionalities in the …


Studying The Effects Of New Additive Materials For The Improvement Of The Capacity And Cycle Life Performance Of The Lead-Acid Battery, Julian Kosacki Jan 2021

Studying The Effects Of New Additive Materials For The Improvement Of The Capacity And Cycle Life Performance Of The Lead-Acid Battery, Julian Kosacki

Doctoral Dissertations

"Lead-acid batteries are an established technology with nearly 99% recyclability; however, lead-acid batteries produce only 40% of their theoretical capacity due to poor active mass utilization and PbSO4 pore blockage, and the longevity of the batteries is hampered by secondary reactions during the cycle life such as corrosion and gassing.

Lead-acid batteries were investigated and improved through several different approaches: an alternative electrolyte to mitigate secondary reactions, graphite additives to improve positive active mass (PAM) utilization, and dispersant additives to help the industrial pasting process.

The thermodynamics and chemical reactions of a commercial electrolyte replacement called TydrolyteTM were investigated …


Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya Jan 2021

Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya

Graduate Theses and Dissertations

Hydrogen fuel is increasingly seen as an appealing alternative by both the scientific and the industrial communities in the drive towards a clean energy future. Hydrogen, unlike fossil-based fuels, does not release carbon dioxide, a chief component of greenhouse gases, upon combustion. However, more than 95% of the hydrogen in the world is still produced by burning fossil fuels as this method is currently the only economically feasible option at a large industrial scale.

Water electrolysis shows a lot of potential in both hydrogen generation and in the storage of energy from renewable sources such as wind and sunlight. Likewise, …


Carbon Capture And Utilization, Sriram Valluri Jan 2021

Carbon Capture And Utilization, Sriram Valluri

Dissertations, Master's Theses and Master's Reports

As the world moves towards clean energy initiative, carbon capture and utilization technologies are key to achieving net zero emissions. CO2 capture with amines has many disadvantages and cannot be applied to commercial power plants. The current manuscript will address this issue as well as a solution that involves the use of low-cost alkali absorbent CO2 capture solutions, combined with an electrochemical regeneration method that uses the least amount of energy available for capture and regeneration. This research will also further address the issue of how to deal with the captured CO2. Several viable storage and utilization methods have …


Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci Jan 2021

Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci

Williams Honors College, Honors Research Projects

Identifying materials to efficiently facilitate the oxygen evolution reaction (OER) is key to advancing water electrolysis, an essential technology in the pathway towards a sustainable energy future. Here, we explore cold-plasma treatment as a facile method to enhance the activity of NiP nanoparticles supported on activated carbon. NiP nanoparticles were synthesized on an activated carbon support using a solid-state method and were then treated with argon, oxygen, and hydrogen plasmas for extended times. In all cases, plasma treatment reduced the number of active sites on the support. OER activity was evaluated by testing the materials in alkaline conditions. The activities …


Bio-Inspired Materials For Electrochemical Sensors, Matthew Joseph Hummel Jan 2021

Bio-Inspired Materials For Electrochemical Sensors, Matthew Joseph Hummel

Electronic Theses and Dissertations

Electrochemical biosensors are a rapidly growing research area that has greatly improved its specificity, accuracy, and precision in the detection of biomolecules in contemporary literature and industry alike. Typically, these systems exist in a three-electrode conformation with a working electrode functioning as the anode, a counter electrode functioning as the cathode, and a reference electrode allowing for the control of potential in the system. The method by which these sensors work is through the sharing of electrons via redox reactions with the target molecule and the working electrode or modifications on its surface. By exploiting the function of biomaterials that …


Biomass-Derived Electrode Materials And Sustainable Processes For Supercapacitors, Katelyn M. Shell Jan 2021

Biomass-Derived Electrode Materials And Sustainable Processes For Supercapacitors, Katelyn M. Shell

Theses and Dissertations

Biomass is one of the most abundant natural resources and has been used as a source of energy for thousands of years. Biomass as a precursor for energy storage materials is still relatively novel and faces several obstacles before becoming commonly used in today’s electrical devices. Currently, energy storage devices, such as batteries, capacitors, and supercapacitors, utilize petroleum-derived graphitic carbons for anodes, generating a need for more sustainable materials. Biomass, as a carbon-rich source for electrode materials, presents a viable and economically feasible alternative due to the prevalent lignocellulosic compounds: lignin, cellulose, and hemicellulose. Preliminary studies on the solid residues …