Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Optimizing Membrane Distillation With Solar Thermal Collectors, Andrew Mason, Ben Shulders, Siamak Nejati Sep 2020

Optimizing Membrane Distillation With Solar Thermal Collectors, Andrew Mason, Ben Shulders, Siamak Nejati

UCARE Research Products

With rising human populations, the demand for freshwater is an ever-growing problem. One emerging technology to combat this problem is membrane distillation (MD). MD has several advantages for water desalination including 100% rejection of solute (salt, heavy metals, etc.) and mergeability with other affordable energy sources (solar heat, electric resistance, etc.) However, at the moment the specific energy consumption (SEC) of MD is very high due to low water production rates and large energy inputs to heat water. In a solar‐assisted design for MD, the high cost of solar collectors (~$200/m2) inhibits the low cost of water production in comparison …


Surface Modifications Of Reverse Osmosis Membranes For Removal Of Bromide And Reduction Of Fouling, Joseph Seo Jun 2020

Surface Modifications Of Reverse Osmosis Membranes For Removal Of Bromide And Reduction Of Fouling, Joseph Seo

Master's Theses

Reverse osmosis (RO) is widely used for water reuse and desalination. Although RO membranes are known for their high salt rejection and practical permeate flux, their performance can be impaired by fouling, and their removal of some disinfection byproducts and their precursors (e.g., bromide, N-Nitrosodimethylamine [NDMA]) does not meet drinking water standards. RO membrane modifications have been widely studied to overcome these limitations. In this research, RO membranes were grafted with cationic polymers to induce a positive charge on the RO membrane surface. This modification aimed at enhancing the rejection of negatively charged bromide ions by removing them from solution …


Investigation Of New Forward Osmosis Draw Agents And Prioritization Of Recent Developments Of Draw Agents Using Multi-Criteria Decision Analysis, Jodie Wei Yu Jun 2020

Investigation Of New Forward Osmosis Draw Agents And Prioritization Of Recent Developments Of Draw Agents Using Multi-Criteria Decision Analysis, Jodie Wei Yu

Master's Theses

Forward osmosis (FO) is an emerging technology for water treatment due to their ability to draw freshwater using an osmotic pressure gradient across a semi-permeable membrane. However, the lack of draw agents that could both produce reasonable flux and be separated from the draw solution at a low cost stand in the way of widespread implementation. This study had two objectives: evaluate the performance of three materials — peptone, carboxymethyl cellulose (CMC), and magnetite nanoparticles (Fe3O4 NPs) — as potential draw agents, and to use multi-criteria decision matrices to systematically prioritize known draw agents from literature for …


Engineering Ionomer Materials For Addressing Ohmic Resistances In Electrochemical Desalination And Waste Heat Recovery, Varada Menon Palakkal May 2020

Engineering Ionomer Materials For Addressing Ohmic Resistances In Electrochemical Desalination And Waste Heat Recovery, Varada Menon Palakkal

LSU Doctoral Dissertations

Water scarcity and energy availability present important challenges that need to be addressed in the coming centuries. In the front of water technologies, desalting brackish water is of extreme importance for thermal electric power plants, chemical manufacturing plants, and other industrial operations that treat and reuse their water utilities. Membrane capacitive deionization (MCDI) is an energy efficient desalination technique that has drawn attention from commercial entities. Most material research studies on MCDI focus on enhancing electrode performance while little emphasis is given to rationale design of ion-exchange membranes (IEMs). In this work, the ionic conductivity, permselectivity, and thickness for three …


Imaging Of Membrane Concentration Polarization By Nacl Using 23na Nuclear Magnetic Resonance, Masoumeh Zargar, Ryuta Ujihara, Sarah J. Vogt, Johannes S. Vrouwenvelder, Einar O. Fridjonsson, Michael L. Johns Apr 2020

Imaging Of Membrane Concentration Polarization By Nacl Using 23na Nuclear Magnetic Resonance, Masoumeh Zargar, Ryuta Ujihara, Sarah J. Vogt, Johannes S. Vrouwenvelder, Einar O. Fridjonsson, Michael L. Johns

Research outputs 2014 to 2021

Forward osmosis (FO) and reverse osmosis (RO) membrane processes differ in their driving forces: osmotic pressure versus hydraulic pressure. Concentration polarization (CP) can adversely affect both performance and lifetime in such membrane systems. In order to mitigate against CP, the extent and severity of it need to be predicted more accurately through advanced online monitoring methodologies. Whilst a variety of monitoring techniques have been used to study the CP mechanism, there is still a pressing need to develop and apply non-invasive, in situ techniques able to produce quantitative, spatially resolved measurements of heterogeneous solute concentration in, and adjacent to, the …


Reverse Osmosis; Addressing Freshwater Shortage With Sustainable Desalination, Jessica Savage Jan 2020

Reverse Osmosis; Addressing Freshwater Shortage With Sustainable Desalination, Jessica Savage

Sustainability Conference

Water security is an imperative part of high-functioning societies. Currently, large populations of the globe live in water-impoverished or water-stressed areas. With climate change and growing global populations, projections show more people being impacted by issues of water shortage.

One solution to water security is the implementation of desalination, specifically with reverse osmosis systems. This presentation walks through the history, capabilities, future work, and explanations on how reverse osmosis systems work. With continued research on improving desalination, communities in both developed and developing nations around the world can work towards total water security.


Evaluation And Modeling Of Electrodialysis For High-Recovery Brackish Water Desalination, Shahrouz Jafarzade Ghadimi Jan 2020

Evaluation And Modeling Of Electrodialysis For High-Recovery Brackish Water Desalination, Shahrouz Jafarzade Ghadimi

Open Access Theses & Dissertations

This research investigates the feasibility of desalination of brackish water with electrodialysis (ED), using laboratory testing and mathematical modeling. Several experiments were performed to characterize ion-specific transport and to evaluate tradeoffs between salinity removal and specific energy consumption. A 200 cm2 Ameridia ED stack was used to perform desalination experiments with real brackish groundwater from the Kay Bailey Hutchison desalination plant in El Paso, Texas, and the results showed limiting current density of 160 A/m2 for 5 cm/s. A higher conductivity reduction was observed for flow velocity of 5 cm/s compared to 13 cm/s. Ion transport selectivity (based on relative …


Editorial For The Special Issue On Micro/Nano-Chip Electrokinetics, Volume Iii, Shizhi Qian, Xiangchun Xuan Jan 2020

Editorial For The Special Issue On Micro/Nano-Chip Electrokinetics, Volume Iii, Shizhi Qian, Xiangchun Xuan

Mechanical & Aerospace Engineering Faculty Publications

No abstract provided.


High-Performance Zero Liquid Discharge (Zld) Treatment Of High-Salinity Brines Using A Multiple-Effect Absorption Distillation Concept, Sunil Pinnu Jan 2020

High-Performance Zero Liquid Discharge (Zld) Treatment Of High-Salinity Brines Using A Multiple-Effect Absorption Distillation Concept, Sunil Pinnu

Dissertations, Master's Theses and Master's Reports

State-of-the-art zero liquid discharge (ZLD) technologies are currently bound with either intensive use of high-grade electrical energy such as mechanical vacuum vapor compressors utilized in brine crystallizers or high capital cost with environmental concerns such as evaporation ponds. The present study aims to address these issues by an innovative desiccant-based ZLD system in which a multiple-effect distillation (MED) unit is uniquely embedded at the heart of an absorption-desorption system. Here, the MED and absorption systems are inherently coupled enabling both heat and mass transfer processes between a high-salinity water and a desiccant solution. The proposed technology employs an absorption-based thermally-driven …


A Multipurpose Desalination, Cooling, And Air-Conditioning System Powered By Waste Heat Recovery From Submarine Diesel Exhaust Fumes And Cooling Water, Abdellah Shafieian, Mehdi Khiadani Jan 2020

A Multipurpose Desalination, Cooling, And Air-Conditioning System Powered By Waste Heat Recovery From Submarine Diesel Exhaust Fumes And Cooling Water, Abdellah Shafieian, Mehdi Khiadani

Research outputs 2014 to 2021

The role of cooling and air-conditioning systems in submarines is assessed as indispensable, and a reliable water supply is essential for both crew and equipment. At the same time, the large amounts of high-temperature exhaust fumes discharged from submarine engines provide an excellent opportunity to recover and apply this waste energy in required applications. This paper introduces a novel multipurpose desalination, cooling, and air-conditioning system to recover waste heat from both the exhaust fumes and the cooling water of submarine engines. The whole system is mathematically modelled and analysed based on the actual thermo-physical parameters of the engine's exhaust fumes. …


A Solar‐Driven Membrane‐Based Water Desalination/Purification System, Abdellah Shafieian Dastjerdi Jan 2020

A Solar‐Driven Membrane‐Based Water Desalination/Purification System, Abdellah Shafieian Dastjerdi

Theses: Doctorates and Masters

Lack of fresh water has turned into one of the major challenges of the world in the present century. Desalination of brackish or seawater has been proven to be one of the best solutions to cope with this global challenge. Among all the desalination methods, Membrane Distillation (MD) is well known as a cost effective and profitable technology for treating saline water. However, higher energy consumption compared to other separation techniques has been reported as MD’s main drawback. That is why the application of solar energy to provide the thermal energy requirement of MD modules has been the focal point …