Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Entrainment Processes For A Jet In Cross-Flow: The Quantification Of Turbulent Contributions And Their Importance On Accurate Modeling, Graham Asher Freedland Dec 2020

Entrainment Processes For A Jet In Cross-Flow: The Quantification Of Turbulent Contributions And Their Importance On Accurate Modeling, Graham Asher Freedland

Dissertations and Theses

A jet in cross flow (JICF) is examined experimentally by injecting a stream of air into crossing fluid with an aim into quantifying entrainment process and downstream evolution. The behavior of JICF is important to fields ranging from turbine-blade cooling to smokestack pollution and volcanic eruption dynamics. Existing simplified volcanic plume models are tested; most importantly, the near-field contributions of complex interconnected vortex systems, which present significant uncertainties because they assume negligible turbulence. While jets in irrotational cross-flow have been investigated, this analysis has focused on the interaction between a turbulent jet in low and highly turbulent cross-flow created by …


Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt Nov 2020

Extending The Functional Subnetwork Approach To A Generalized Linear Integrate-And-Fire Neuron Model, Nicholas Szczecinski, Roger Quinn, Alexander J. Hunt

Mechanical and Materials Engineering Faculty Publications and Presentations

Engineering neural networks to perform specific tasks often represents a monumental challenge in determining network architecture and parameter values. In this work, we extend our previously-developed method for tuning networks of non-spiking neurons, the “Functional subnetwork approach” (FSA), to the tuning of networks composed of spiking neurons. This extension enables the direct assembly and tuning of networks of spiking neurons and synapses based on the network’s intended function, without the use of global optimization ormachine learning. To extend the FSA, we show that the dynamics of a generalized linear integrate and fire (GLIF) neuronmodel have fundamental similarities to those of …


Characterization And Manipulation Of Carbon Precursor Species During Plasma Enhanced Chemical Vapor Deposition Of Graphene, Otto Zietz, Samuel Olson, Brendan Coyne, Yilian Liu, Jun Jiao Nov 2020

Characterization And Manipulation Of Carbon Precursor Species During Plasma Enhanced Chemical Vapor Deposition Of Graphene, Otto Zietz, Samuel Olson, Brendan Coyne, Yilian Liu, Jun Jiao

Mechanical and Materials Engineering Faculty Publications and Presentations

To develop a synthesis technique providing enhanced control of graphene film quality and uniformity, a systematic characterization and manipulation of hydrocarbon precursors generated during plasma enhanced chemical vapor deposition of graphene is presented. Remote ionization of acetylene is observed to generate a variety of neutral and ionized hydrocarbon precursors, while in situ manipulation of the size and reactivity of carbon species permitted to interact with the growth catalyst enables control of the resultant graphene morphology. Selective screening of high energy hydrocarbon ions coupled with a multistage bias growth regime results in the production of 90% few-to-monolayer graphene on 50 nm …


Modeling Airflows And Voc Source Strengths For An Occupied School, Brett Stinson Oct 2020

Modeling Airflows And Voc Source Strengths For An Occupied School, Brett Stinson

University Honors Theses

Volatile organic compounds (VOCs) are a group of air pollutants that can adversely impact human health, engage in chemistry indoors, and meaningfully degrade indoor and outdoor urban air quality. While extensive research with regard to VOC emission rates from indoor sources has been conducted, it was not until recently that this work began to focus on characterizing emissions from humans and human activity in depth. As buildings are constructed to be increasingly airtight, and the materials utilized are chosen to reduce VOC emissions, it follows that human contributions are poised to become increasingly important indoor sources of VOCs. Utilizing data …


Indoor Air Quality Impacts Of A Woodstove Exchange Program In Washington County, Oregon, Matthew Forrest Survilo Sep 2020

Indoor Air Quality Impacts Of A Woodstove Exchange Program In Washington County, Oregon, Matthew Forrest Survilo

Dissertations and Theses

More than six million people in the United States use wood stoves as their primary heat source. Wood stoves emit air pollutants that may impact health, e.g., wood combustion products are associated with premature death and aggravation of pulmonary and cardiovascular conditions. There are few studies investigating the efficacy of wood stove exchange programs (WSEPs) as a method to improve indoor air quality (IAQ). In partnership with Washington County Department of Health and Human Services we conducted an air quality study to measure the impact of a WSEP on indoor and neighborhood levels of wood combustion products. Twenty households engaged …


Dynamic Effects Of Inertial Particles On The Wake Recovery Of A Model Wind Turbine, Sarah E. Smith Jul 2020

Dynamic Effects Of Inertial Particles On The Wake Recovery Of A Model Wind Turbine, Sarah E. Smith

Dissertations and Theses

Impacting particles such as rain, dust, and other debris can have devastating structural effects on wind turbines, but little is known about the interaction of such debris within turbine wakes. This study aims to characterize behavior of inertial particles within the turbulent wake of a wind turbine and relative effects on wake recovery. Here a model wind turbine is subjected to varied two-phase inflow conditions, with wind as the carrier fluid (Reλ = 49 - 88) and polydisperse water droplets (26 to 45µm in diameter) at varied concentrations (Φv=0.24 x 10-5 - 1.3 …


Droplet Ejections During Wet Lab Operations Aboard Spacecraft, Caleb Cushman Turner Jul 2020

Droplet Ejections During Wet Lab Operations Aboard Spacecraft, Caleb Cushman Turner

Dissertations and Theses

The breakup and rupture of liquid bridges, thin films, bubbles, droplets, rivulets, and jets can produce satellite droplets that are subsequently ejected into their surrounding environment. For example, when any solid object is withdrawn from a liquid bath, the formation of an ever-thinning columnar liquid bridge eventually ruptures along the axis of the bridge. When rupture occurs under typical pipetting conditions the dynamics governing the rupture almost always produce at a minimum a satellite droplet. When these droplets occur they are often too small and too fast to be observed by the human eye. In a terrestrial environment they are …


A Numerical Investigation Of Microgravity Evaporation, Daniel Peter Ringle Apr 2020

A Numerical Investigation Of Microgravity Evaporation, Daniel Peter Ringle

Dissertations and Theses

Evaporation is important to myriad engineering processes such as cooling, distillation, thin film deposition, and others. In fact, NASA has renewed interest in using cabin air pressure evaporation as a means to recycle waste water in space. As one example, NASA recently conducted experiments aboard the International Space Station (ISS) to measure evaporation rates in microgravity and to determine the impacts of porous structure on the process. It has long been assumed that differences in evaporation rates between 1-g0 and microgravity are small. However, discrepancies by as much as 40% have been observed in practice. The assumption now …


Characterization Of Inertial Particles In The Turbulent Wake Of A Porous Disk, Kristin Nichole Travis Jan 2020

Characterization Of Inertial Particles In The Turbulent Wake Of A Porous Disk, Kristin Nichole Travis

Dissertations and Theses

This study presents the findings of a wind tunnel experiment investigating the behaviour of micrometric inertial particles in the turbulent wake of a stationary porous disk. Various concentrations [Φv ∈ (2.95 x 10-6 - 1.22 x 10-5)] of polydisperse water droplets (diameter 13-41 µm) are compared to sub-inertial tracer particles. Hot-wire anemometry, phase Doppler interferometry and particle image velocimetry were implemented in the near and far wake regions to study the complex dynamics of the particles. Turbulence statistics and particle size distributions are presented and used to explore the particle wake interaction.


The Optimization Of Machining Parameters For Milling Operations By Using The Nelder Mead Simplex Method, Yubin Lee Jan 2020

The Optimization Of Machining Parameters For Milling Operations By Using The Nelder Mead Simplex Method, Yubin Lee

Dissertations and Theses

Machining operations need to be optimized to maximize profit for computer numerical control (CNC) machines. Although minimum production time could mean high productivity, it can not guarantee maximum profit rate in CNC milling operations. The possible range of machining parameters is limited by several constraints, such as maximum machine power, surface finish requirements, and maximum cutting force for the stability of milling operations. Among CNC machining parameters, cutting speed and feed have the greatest effect on machining operations. Therefore, cutting speed and feed are considered as main process variables to maximize the profit rate of CNC milling operations.

A variety …


Modelling Lagrangian Velocity And Acceleration In Turbulent Flows As Infinitely Differentiable Stochastic Process, Bianca Fontanin Viggiano, Jan Friedrich, Romain Volk, Mickael Bourgoin, Raúl Bayoán Cal, Laurent Chevillard Jan 2020

Modelling Lagrangian Velocity And Acceleration In Turbulent Flows As Infinitely Differentiable Stochastic Process, Bianca Fontanin Viggiano, Jan Friedrich, Romain Volk, Mickael Bourgoin, Raúl Bayoán Cal, Laurent Chevillard

Mechanical and Materials Engineering Faculty Publications and Presentations

We develop a stochastic model for Lagrangian velocity as it is observed in experimental and numerical fully developed turbulent flows. We define it as the unique statistically stationary solution of a causal dynamics, given by a stochastic differential equation. In comparison to previously proposed stochastic models, the obtained process is infinitely differentiable at a given finite Reynolds number, and its second-order statistical properties converge to those of an Ornstein-Uhlenbeck process in the infinite Reynolds number limit. In this limit, it exhibits furthermore intermittent scaling properties, as they can be quantified using higher-order statistics. To achieve this, we begin with generalizing …


A Dynamic Neural Network Designed Using Analytical Methods Produces Dynamic Control Properties Similar To An Analogous Classical Controller, Wade William Hilts, Nicholas Szczecinski, Roger Quinn, Alexander Hunt Jan 2020

A Dynamic Neural Network Designed Using Analytical Methods Produces Dynamic Control Properties Similar To An Analogous Classical Controller, Wade William Hilts, Nicholas Szczecinski, Roger Quinn, Alexander Hunt

Mechanical and Materials Engineering Faculty Publications and Presentations

Human balance is achieved using many concurrent control loops that combine to react to changes in environment, posture, center of mass and other factors affecting stability. Though numerous engineering models of human balance control have been tested, no methods for porting these models to a neural architecture have been established. It is our hypothesis that the analytical methods we have developed, combined with classical control techniques will provide a reasonable starting point for developing dynamic neural controllers that can reproduce classical control capabilities. In previous work, we tested this hypothesis and demonstrated that a biologically-constrained neural controller that replicates human …


Openfoam Simulations Of Late Stage Container Draining In Microgravity, Joshua Thomas Mccraney, Mark M. Weislogel, Paul Steen Jan 2020

Openfoam Simulations Of Late Stage Container Draining In Microgravity, Joshua Thomas Mccraney, Mark M. Weislogel, Paul Steen

Mechanical and Materials Engineering Faculty Publications and Presentations

In the reduced acceleration environment aboard orbiting spacecraft, capillary forces are often exploited to access and control the location and stability of fuels, propellants, coolants, and biological liquids in containers (tanks) for life support. To access the ‘far reaches’ of such tanks, the passive capillary pumping mechanism of interior corner networks can be employed to achieve high levels of draining. With knowledge of maximal corner drain rates, gas ingestion can be avoided and accurate drain transients predicted. In this paper, we benchmark a numerical method for the symmetric draining of capillary liquids in simple interior corners. The free surface is …


Detailed Energy Efficiency Strategies For Converting An Existing Office Building To Nzeb: A Case Study In The Pacific Northwest, Ali Alajmi, Abby Short, Janna Ferguson, Kalina K. Vander Poel, Corey T. Griffin Jan 2020

Detailed Energy Efficiency Strategies For Converting An Existing Office Building To Nzeb: A Case Study In The Pacific Northwest, Ali Alajmi, Abby Short, Janna Ferguson, Kalina K. Vander Poel, Corey T. Griffin

Mechanical and Materials Engineering Faculty Publications and Presentations

This paper is an attempt to identify a methodology for converting conventional energy consumption buildings to net-zero energy buildings (NZEB). The first step was rather different from the usual energy audit, which is to analyze a facility’s energy consumptions from both macro- and micro-scales. To implement such an approach, a governmental office building (Metro) in Portland, OR, was chosen as a case study. After a building model was validated against a real measurement, it was then used to evaluate different energy efficiency strategies (EESs) so as to reduce the energy consumption. The EESs showed a reduction in energy use intensity …


Data-Driven Modeling Of The Wake Behind A Wind Turbine Array, Naseem Ali, Raul Bayoan Cal Jan 2020

Data-Driven Modeling Of The Wake Behind A Wind Turbine Array, Naseem Ali, Raul Bayoan Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

The wake flow in a wind turbine array boundary layer is described using the Koopman operator. Dynamics of the flow are decomposed into the linear and forcing terms, and the low-energy delay coordinates are revealed. The rare events show the non-Gaussian long tails that capture the switching and bursting phenomena. The near-wake region shows the incoherent phase space region, where the dynamics are strongly nonlinear. The far-wake region is marked with the small non-Gaussian forcing term, and the dynamics are largely governed by linear dynamics. The data-driven predictive model is built based on the Hankel-based dynamic mode decomposition and treats …


Utility-Scale Solar Pv Performance Enhancements Through System Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raúl Bayoán Cal Jan 2020

Utility-Scale Solar Pv Performance Enhancements Through System Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raúl Bayoán Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

Performance of solar PV diminishes with the increase in temperature of the solar modules. Therefore, to further facilitate the reduction in cost of photovoltaic energy, new approaches to limit module temperature increase in natural ambient conditions should be explored. Thus far only approaches based at the individual panel level have been investigated, while the more complex, systems approach remains unexplored. Here, we perform the first wind tunnel scaled solar farm experiments to investigate the potential for temperature reduction through system-level flow enhancement. The percentage of solar irradiance converted into electric power depends upon module efficiency, typically less than 20%. The …


Utility-Scale Solar Pv Performance Enhancements Through System-Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raul Bayoan Cal Jan 2020

Utility-Scale Solar Pv Performance Enhancements Through System-Level Modifications, Andrew D. S. Glick, Naseem Ali, Juliaan Bossuyt, Marc Calaf, Raul Bayoan Cal

Mechanical and Materials Engineering Faculty Publications and Presentations

Performance of solar PV diminishes with the increase in temperature of the solar modules. Therefore, to further facilitate the reduction in cost of photovoltaic energy, new approaches to limit module temperature increase in natural ambient conditions should be explored. Thus far only approaches based at the individual panel level have been investigated, while the more complex, systems approach remains unexplored. Here, we perform the first wind tunnel scaled solar farm experiments to investigate the potential for temperature reduction through system-level flow enhancement. The percentage of solar irradiance converted into electric power depends upon module efficiency, typically less than 20%. The …