Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

Physical Sciences and Mathematics

Machine learning

Institution
Publication
Publication Type

Articles 1 - 30 of 50

Full-Text Articles in Engineering

Countering Internet Packet Classifiers To Improve User Online Privacy, Sina Fathi-Kazerooni Dec 2020

Countering Internet Packet Classifiers To Improve User Online Privacy, Sina Fathi-Kazerooni

Dissertations

Internet traffic classification or packet classification is the act of classifying packets using the extracted statistical data from the transmitted packets on a computer network. Internet traffic classification is an essential tool for Internet service providers to manage network traffic, provide users with the intended quality of service (QoS), and perform surveillance. QoS measures prioritize a network's traffic type over other traffic based on preset criteria; for instance, it gives higher priority or bandwidth to video traffic over website browsing traffic. Internet packet classification methods are also used for automated intrusion detection. They analyze incoming traffic patterns and identify malicious …


Sensitivity Analysis Of An Agent-Based Simulation Model Using Reconstructability Analysis, Andey M. Nunes, Martin Zwick, Wayne Wakeland Dec 2020

Sensitivity Analysis Of An Agent-Based Simulation Model Using Reconstructability Analysis, Andey M. Nunes, Martin Zwick, Wayne Wakeland

Systems Science Faculty Publications and Presentations

Reconstructability analysis, a methodology based on information theory and graph theory, was used to perform a sensitivity analysis of an agent-based model. The NetLogo BehaviorSpace tool was employed to do a full 2k factorial parameter sweep on Uri Wilensky’s Wealth Distribution NetLogo model, to which a Gini-coefficient convergence condition was added. The analysis identified the most influential predictors (parameters and their interactions) of the Gini coefficient wealth inequality outcome. Implications of this type of analysis for building and testing agent-based simulation models are discussed.


Enhanced Traffic Incident Analysis With Advanced Machine Learning Algorithms, Zhenyu Wang Dec 2020

Enhanced Traffic Incident Analysis With Advanced Machine Learning Algorithms, Zhenyu Wang

Computational Modeling & Simulation Engineering Theses & Dissertations

Traffic incident analysis is a crucial task in traffic management centers (TMCs) that typically manage many highways with limited staff and resources. An effective automatic incident analysis approach that can report abnormal events timely and accurately will benefit TMCs in optimizing the use of limited incident response and management resources. During the past decades, significant efforts have been made by researchers towards the development of data-driven approaches for incident analysis. Nevertheless, many developed approaches have shown limited success in the field. This is largely attributed to the long detection time (i.e., waiting for overwhelmed upstream detection stations; meanwhile, downstream stations …


Embedded Power Optimization Method Based On User Behavior, Wang Hai, Gao Ling, Dongqi Chen, Ren Jie Sep 2020

Embedded Power Optimization Method Based On User Behavior, Wang Hai, Gao Ling, Dongqi Chen, Ren Jie

Journal of System Simulation

Abstract: In recent years, with the rapid development of embedded device represented by mobile phone and tablet computer, low power technology has been one of the hotspots in the embedded research field. Because the battery capacity of embedded device is limited due to its restricted volume and weight, there are often users suffering the problem that their phone battery being dead. There are many research directions in embedded low power field at present. The relationship between low power and user behavior recognition was aimed, which started with recognizing user behavior using machine learning and then obtains the user’s daily usage …


A Hybrid Framework Using A Qubo Solver For Permutation-Based Combinatorial Optimization, Siong Thye Goh, Sabrish Gopalakrishnan, Jianyuan Bo, Hoong Chuin Lau Sep 2020

A Hybrid Framework Using A Qubo Solver For Permutation-Based Combinatorial Optimization, Siong Thye Goh, Sabrish Gopalakrishnan, Jianyuan Bo, Hoong Chuin Lau

Research Collection School Of Computing and Information Systems

In this paper, we propose a hybrid framework to solve large-scale permutation-based combinatorial problems effectively using a high-performance quadratic unconstrained binary optimization (QUBO) solver. To do so, transformations are required to change a constrained optimization model to an unconstrained model that involves parameter tuning. We propose techniques to overcome the challenges in using a QUBO solver that typically comes with limited numbers of bits. First, to smooth the energy landscape, we reduce the magnitudes of the input without compromising optimality. We propose a machine learning approach to tune the parameters for good performance effectively. To handle possible infeasibility, we introduce …


Joint 1d And 2d Neural Networks For Automatic Modulation Recognition, Luis M. Rosario Morel Sep 2020

Joint 1d And 2d Neural Networks For Automatic Modulation Recognition, Luis M. Rosario Morel

Theses and Dissertations

The digital communication and radar community has recently manifested more interest in using data-driven approaches for tasks such as modulation recognition, channel estimation and distortion correction. In this research we seek to apply an object detector for parameter estimation to perform waveform separation in the time and frequency domain prior to classification. This enables the full automation of detecting and classifying simultaneously occurring waveforms. We leverage a lD ResNet implemented by O'Shea et al. in [1] and the YOLO v3 object detector designed by Redmon et al. in [2]. We conducted an in depth study of the performance of these …


Hybrid Deep Neural Networks For Mining Heterogeneous Data, Xiurui Hou Aug 2020

Hybrid Deep Neural Networks For Mining Heterogeneous Data, Xiurui Hou

Dissertations

In the era of big data, the rapidly growing flood of data represents an immense opportunity. New computational methods are desired to fully leverage the potential that exists within massive structured and unstructured data. However, decision-makers are often confronted with multiple diverse heterogeneous data sources. The heterogeneity includes different data types, different granularities, and different dimensions, posing a fundamental challenge in many applications. This dissertation focuses on designing hybrid deep neural networks for modeling various kinds of data heterogeneity.

The first part of this dissertation concerns modeling diverse data types, the first kind of data heterogeneity. Specifically, image data and …


Changing The Focus: Worker-Centric Optimization In Human-In-The-Loop Computations, Mohammadreza Esfandiari Aug 2020

Changing The Focus: Worker-Centric Optimization In Human-In-The-Loop Computations, Mohammadreza Esfandiari

Dissertations

A myriad of emerging applications from simple to complex ones involve human cognizance in the computation loop. Using the wisdom of human workers, researchers have solved a variety of problems, termed as “micro-tasks” such as, captcha recognition, sentiment analysis, image categorization, query processing, as well as “complex tasks” that are often collaborative, such as, classifying craters on planetary surfaces, discovering new galaxies (Galaxyzoo), performing text translation. The current view of “humans-in-the-loop” tends to see humans as machines, robots, or low-level agents used or exploited in the service of broader computation goals. This dissertation is developed to shift the focus back …


Comparison Of Machine Learning Models: Gesture Recognition Using A Multimodal Wrist Orthosis For Tetraplegics, Charlie Martin Aug 2020

Comparison Of Machine Learning Models: Gesture Recognition Using A Multimodal Wrist Orthosis For Tetraplegics, Charlie Martin

The Journal of Purdue Undergraduate Research

Many tetraplegics must wear wrist braces to support paralyzed wrists and hands. However, current wrist orthoses have limited functionality to assist a person’s ability to perform typical activities of daily living other than a small pocket to hold utensils. To enhance the functionality of wrist orthoses, gesture recognition technology can be applied to control mechatronic tools attached to a novel fabricated wrist brace. Gesture recognition is a growing technology for providing touchless human-computer interaction that can be particularly useful for tetraplegics with limited upper-extremity mobility. In this study, three gesture recognition models were compared—two dynamic time-warping models and a hidden …


Detection Of Stealthy False Data Injection Attacks Against State Estimation In Electric Power Grids Using Deep Learning Techniques, Qingyu Ge Aug 2020

Detection Of Stealthy False Data Injection Attacks Against State Estimation In Electric Power Grids Using Deep Learning Techniques, Qingyu Ge

Theses and Dissertations

Since communication technologies are being integrated into smart grid, its vulnerability to false data injection is increasing. State estimation is a critical component which is used for monitoring the operation of power grid. However, a tailored attack could circumvent bad data detection of the state estimation, thus disturb the stability of the grid. Such attacks are called stealthy false data injection attacks (FDIAs). This thesis proposed a prediction-based detector using deep learning techniques to detect injected measurements. The proposed detector adopts both Convolutional Neural Networks and Recurrent Neural Networks, making full use of the spatial-temporal correlations in the measurement data. …


Analyzing The Fractal Dimension Of Various Musical Pieces, Nathan Clark Aug 2020

Analyzing The Fractal Dimension Of Various Musical Pieces, Nathan Clark

Industrial Engineering Undergraduate Honors Theses

One of the most common tools for evaluating data is regression. This technique, widely used by industrial engineers, explores linear relationships between predictors and the response. Each observation of the response is a fixed linear combination of the predictors with an added error element. The method is built on the assumption that this error is normally distributed across all observations and has a mean of zero. In some cases, it has been found that the inherent variation is not the result of a random variable, but is instead the result of self-symmetric properties of the observations. For data with these …


A Machine Learning Approach To Delineating Neighborhoods From Geocoded Appraisal Data, Rao Hamza Ali, Josh Graves, Stanley Wu, Jenny Lee, Erik Linstead Jul 2020

A Machine Learning Approach To Delineating Neighborhoods From Geocoded Appraisal Data, Rao Hamza Ali, Josh Graves, Stanley Wu, Jenny Lee, Erik Linstead

Engineering Faculty Articles and Research

Identification of neighborhoods is an important, financially-driven topic in real estate. It is known that the real estate industry uses ZIP (postal) codes and Census tracts as a source of land demarcation to categorize properties with respect to their price. These demarcated boundaries are static and are inflexible to the shift in the real estate market and fail to represent its dynamics, such as in the case of an up-and-coming residential project. Delineated neighborhoods are also used in socioeconomic and demographic analyses where statistics are computed at a neighborhood level. Current practices of delineating neighborhoods have mostly ignored the information …


Gep Automatic Clustering Algorithm With Dynamic Penalty Factors, Chen Yan, Kangshun Li, Yang Lei Jul 2020

Gep Automatic Clustering Algorithm With Dynamic Penalty Factors, Chen Yan, Kangshun Li, Yang Lei

Journal of System Simulation

Abstract: Various problems such as sensitive selection of initial clustering center, easily falling into local optimal solution, and determining numbers of clusters, still exist in the traditional clustering algorithm. A GEP automatic clustering algorithm with dynamic penalty factors was proposed. This algorithm combines penalty factors and GEP clustering algorithm, and doesn't rely on any priori knowledge of the data set. And a dynamic algorithm was proposed to generate the penalty factors according to the distribution characteristics of different data sets, which is a better solution for the impact of isolated points and noise points. According to four dataset, penalty factors' …


Human Facial Emotion Recognition System In A Real-Time, Mobile Setting, Claire Williamson Jun 2020

Human Facial Emotion Recognition System In A Real-Time, Mobile Setting, Claire Williamson

Honors Theses

The purpose of this project was to implement a human facial emotion recognition system in a real-time, mobile setting. There are many aspects of daily life that can be improved with a system like this, like security, technology and safety.

There were three main design requirements for this project. The first was to get an accuracy rate of 70%, which must remain consistent for people with various distinguishing facial features. The second goal was to have one execution of the system take no longer than half of a second to keep it as close to real time as possible. Lastly, …


Efficient Hardware Implementations Of Bio-Inspired Networks, Anakha Vasanthakumaribabu May 2020

Efficient Hardware Implementations Of Bio-Inspired Networks, Anakha Vasanthakumaribabu

Dissertations

The human brain, with its massive computational capability and power efficiency in small form factor, continues to inspire the ultimate goal of building machines that can perform tasks without being explicitly programmed. In an effort to mimic the natural information processing paradigms observed in the brain, several neural network generations have been proposed over the years. Among the neural networks inspired by biology, second-generation Artificial or Deep Neural Networks (ANNs/DNNs) use memoryless neuron models and have shown unprecedented success surpassing humans in a wide variety of tasks. Unlike ANNs, third-generation Spiking Neural Networks (SNNs) closely mimic biological neurons by operating …


Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead May 2020

Ml-Medic: A Preliminary Study Of An Interactive Visual Analysis Tool Facilitating Clinical Applications Of Machine Learning For Precision Medicine, Laura Stevens, David Kao, Jennifer Hall, Carsten Görg, Kaitlyn Abdo, Erik Linstead

Engineering Faculty Articles and Research

Accessible interactive tools that integrate machine learning methods with clinical research and reduce the programming experience required are needed to move science forward. Here, we present Machine Learning for Medical Exploration and Data-Inspired Care (ML-MEDIC), a point-and-click, interactive tool with a visual interface for facilitating machine learning and statistical analyses in clinical research. We deployed ML-MEDIC in the American Heart Association (AHA) Precision Medicine Platform to provide secure internet access and facilitate collaboration. ML-MEDIC’s efficacy for facilitating the adoption of machine learning was evaluated through two case studies in collaboration with clinical domain experts. A domain expert review was also …


A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin May 2020

A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin

Faculty Publications

In this work, the behavior of dilute interstitial helium in W–Mo binary alloys was explored through the application of a first principles-informed neural network (NN) in order to study the early stages of helium-induced damage and inform the design of next generation materials for fusion reactors. The neural network (NN) was trained using a database of 120 density functional theory (DFT) calculations on the alloy. The DFT database of computed solution energies showed a linear dependence on the composition of the first nearest neighbor metallic shell. This NN was then employed in a kinetic Monte Carlo simulation, which took into …


Development Of Fully Balanced Ssfp And Computer Vision Applications For Mri-Assisted Radiosurgery (Mars), Jeremiah Sanders May 2020

Development Of Fully Balanced Ssfp And Computer Vision Applications For Mri-Assisted Radiosurgery (Mars), Jeremiah Sanders

Dissertations & Theses (Open Access)

Prostate cancer is the second most common cancer in men and the second-leading cause of cancer death in men. Brachytherapy is a highly effective treatment option for prostate cancer, and is the most cost-effective initial treatment among all other therapeutic options for low to intermediate risk patients of prostate cancer. In low-dose-rate (LDR) brachytherapy, verifying the location of the radioactive seeds within the prostate and in relation to critical normal structures after seed implantation is essential to ensuring positive treatment outcomes.

One current gap in knowledge is how to simultaneously image the prostate, surrounding anatomy, and radioactive seeds within the …


Machine Learning Modeling Of Horizontal Photovoltaics Using Weather And Location Data, Christil Pasion, Torrey J. Wagner, Clay Koschnick, Steven J. Schuldt, Jada B. Williams, Kevin Hallinan May 2020

Machine Learning Modeling Of Horizontal Photovoltaics Using Weather And Location Data, Christil Pasion, Torrey J. Wagner, Clay Koschnick, Steven J. Schuldt, Jada B. Williams, Kevin Hallinan

Faculty Publications

Solar energy is a key renewable energy source; however, its intermittent nature and potential for use in distributed systems make power prediction an important aspect of grid integration. This research analyzed a variety of machine learning techniques to predict power output for horizontal solar panels using 14 months of data collected from 12 northern-hemisphere locations. We performed our data collection and analysis in the absence of irradiation data—an approach not commonly found in prior literature. Using latitude, month, hour, ambient temperature, pressure, humidity, wind speed, and cloud ceiling as independent variables, a distributed random forest regression algorithm modeled the combined …


A Framework For Vector-Weighted Deep Neural Networks, Carter Chiu May 2020

A Framework For Vector-Weighted Deep Neural Networks, Carter Chiu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The vast majority of advances in deep neural network research operate on the basis of a real-valued weight space. Recent work in alternative spaces have challenged and complemented this idea; for instance, the use of complex- or binary-valued weights have yielded promising and fascinating results. We propose a framework for a novel weight space consisting of vector values which we christen VectorNet. We first develop the theoretical foundations of our proposed approach, including formalizing the requisite theory for forward and backpropagating values in a vector-weighted layer. We also introduce the concept of expansion and aggregation functions for conversion between real …


Data-Driven Investment Decisions In P2p Lending: Strategies Of Integrating Credit Scoring And Profit Scoring, Yan Wang Apr 2020

Data-Driven Investment Decisions In P2p Lending: Strategies Of Integrating Credit Scoring And Profit Scoring, Yan Wang

Doctor of Data Science and Analytics Dissertations

In this dissertation, we develop and discuss several loan evaluation methods to guide the investment decisions for peer-to-peer (P2P) lending. In evaluating loans, credit scoring and profit scoring are the two widely utilized approaches. Credit scoring aims at minimizing the risk while profit scoring aims at maximizing the profit. This dissertation addresses the strengths and weaknesses of each scoring method by integrating them in various ways in order to provide the optimal investment suggestions for different investors. Before developing the methods for loan evaluation at the individual level, we applied the state-of-the-art method called the Long Short Term Memory (LSTM) …


Truck Trailer Classification Using Side-Fire Light Detection And Ranging (Lidar) Data, Olcay Sahin Apr 2020

Truck Trailer Classification Using Side-Fire Light Detection And Ranging (Lidar) Data, Olcay Sahin

Civil & Environmental Engineering Theses & Dissertations

Classification of vehicles into distinct groups is critical for many applications, including freight and commodity flow modeling, pavement management and design, tolling, air quality monitoring, and intelligent transportation systems. The Federal Highway Administration (FHWA) developed a standardized 13-category vehicle classification ruleset, which meets the needs of many traffic data user applications. However, some applications need high-resolution data for modeling and analysis. For example, the type of commodity being carried must be known in the freight modeling framework. Unfortunately, this information is not available at the state or metropolitan level, or it is expensive to obtain from current resources.

Nevertheless, using …


Algorithm Selection Framework: A Holistic Approach To The Algorithm Selection Problem, Marc W. Chalé Mar 2020

Algorithm Selection Framework: A Holistic Approach To The Algorithm Selection Problem, Marc W. Chalé

Theses and Dissertations

A holistic approach to the algorithm selection problem is presented. The “algorithm selection framework" uses a combination of user input and meta-data to streamline the algorithm selection for any data analysis task. The framework removes the conjecture of the common trial and error strategy and generates a preference ranked list of recommended analysis techniques. The framework is performed on nine analysis problems. Each of the recommended analysis techniques are implemented on the corresponding data sets. Algorithm performance is assessed using the primary metric of recall and the secondary metric of run time. In six of the problems, the recall of …


A Machine Learning Approach To Characterizing Particle Morphology In Nuclear Forensics, Daniel A. Gum Mar 2020

A Machine Learning Approach To Characterizing Particle Morphology In Nuclear Forensics, Daniel A. Gum

Theses and Dissertations

A machine learning approach is taken to characterizing a group of synthetic uranium bearing particles. SEM images of these lab-created particles were converted into a binary representation that captured morphological features in accordance with a guide established by Los Alamos National Laboratory. Each particle in the dataset contains an association with chemical creation conditions: processing method, precipitation temperature and pH, calcination temperature are most closely tied to particle morphology. Additionally, trained classifiers are able to relate final products between particles, implying that morphological features are shared between particles with similar composition.


Cyber-Physical Security With Rf Fingerprint Classification Through Distance Measure Extensions Of Generalized Relevance Learning Vector Quantization, Trevor J. Bihl, Todd J. Paciencia, Kenneth W. Bauer Jr., Michael A. Temple Feb 2020

Cyber-Physical Security With Rf Fingerprint Classification Through Distance Measure Extensions Of Generalized Relevance Learning Vector Quantization, Trevor J. Bihl, Todd J. Paciencia, Kenneth W. Bauer Jr., Michael A. Temple

Faculty Publications

Radio frequency (RF) fingerprinting extracts fingerprint features from RF signals to protect against masquerade attacks by enabling reliable authentication of communication devices at the “serial number” level. Facilitating the reliable authentication of communication devices are machine learning (ML) algorithms which find meaningful statistical differences between measured data. The Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier is one ML algorithm which has shown efficacy for RF fingerprinting device discrimination. GRLVQI extends the Learning Vector Quantization (LVQ) family of “winner take all” classifiers that develop prototype vectors (PVs) which represent data. In LVQ algorithms, distances are computed between exemplars and PVs, and …


Monocular Depth Image Mark-Less Pose Estimation Based On Feature Regression, Chen Ying, Shen Li Feb 2020

Monocular Depth Image Mark-Less Pose Estimation Based On Feature Regression, Chen Ying, Shen Li

Journal of System Simulation

Abstract: Monocular camera mark-less pose estimation system suffers low accuracy, robustness and efficiency due to variety of action, self-occlusion of human body. A method of feature exaction from point clouds was proposed, in which a single-to-multiple (S2M) feature regressor and a joint position regressor were designed to quickly and accurately predict the 3D positions of body joints from a single depth image without any temporal information. Experiment result shows that the estimation accuracy is superior to that of state-of-the-arts and multi-camera based methods.


Critical Temperature Prediction Of Superconductors Based On Atomic Vectors And Deep Learning, Shaobo Li, Yabo Dan, Xiang Li, Tiantian Hu, Rongzhi Dong, Zhuo Cao, Jianjun Hu Feb 2020

Critical Temperature Prediction Of Superconductors Based On Atomic Vectors And Deep Learning, Shaobo Li, Yabo Dan, Xiang Li, Tiantian Hu, Rongzhi Dong, Zhuo Cao, Jianjun Hu

Faculty Publications

In this paper, a hybrid neural network (HNN) that combines a convolutional neural network (CNN) and long short-term memory neural network (LSTM) is proposed to extract the high-level characteristics of materials for critical temperature (Tc) prediction of superconductors. Firstly, by obtaining 73,452 inorganic compounds from the Materials Project (MP) database and building an atomic environment matrix, we obtained a vector representation (atomic vector) of 87 atoms by singular value decomposition (SVD) of the atomic environment matrix. Then, the obtained atom vector was used to implement the coded representation of the superconductors in the order of the atoms in the chemical …


Improving Pain Management In Patients With Sickle Cell Disease Using Machine Learning Techniques, Fan Yang Jan 2020

Improving Pain Management In Patients With Sickle Cell Disease Using Machine Learning Techniques, Fan Yang

Browse all Theses and Dissertations

Sickle cell disease (SCD) is an inherited red blood cell disorder that can cause a multitude of complications throughout a patient's life. Pain is the most common complication and a significant cause of morbidity. Since pain is a highly subjective experience, both medical providers and patients express difficulty in determining ideal treatment and management strategies for pain. Therefore, the development of objective pain assessment and pain forecasting methods is critical to pain management in SCD. On the other hand, the rapidly increasing use of mobile health (mHealth) technology and wearable devices gives the ability to build a remote health intervention …


Machine Learning In Manufacturing: Review, Synthesis, And Theoretical Framework, Ajit Sharma, Zhibo Zhang, Rahul Rai Jan 2020

Machine Learning In Manufacturing: Review, Synthesis, And Theoretical Framework, Ajit Sharma, Zhibo Zhang, Rahul Rai

Business Administration Faculty Research Publications

There has been a paradigmatic shift in manufacturing as computing has transitioned from the programmable to the cognitive computing era. In this paper we present a theoretical framework for understanding this paradigmatic shift in manufacturing and the fast evolving role of artificial intelligence. Policy, Strategic and Operational implications are discussed. Implications for the future of strategy and operations in manufacturing are also discussed. Future research directions are presented.


Automated Recognition Of Facial Affect Using Deep Neural Networks, Behzad Hasani Jan 2020

Automated Recognition Of Facial Affect Using Deep Neural Networks, Behzad Hasani

Electronic Theses and Dissertations

Automated Facial Expression Recognition (FER) has been a topic of study in the field of computer vision and machine learning for decades. In spite of efforts made to improve the accuracy of FER systems, existing methods still are not generalizable and accurate enough for use in real-world applications. Many of the traditional methods use hand-crafted (a.k.a. engineered) features for representation of facial images. However, these methods often require rigorous hyper-parameter tuning to achieve favorable results.

Recently, Deep Neural Networks (DNNs) have shown to outperform traditional methods in visual object recognition. DNNs require huge data as well as powerful computing units …