Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Engineering

Effect Of Reaction Conditions On Cu⁃Catalyzed Co2 Electroreduction, Chang Zhu, Wei Chen, Yan-Fang Song, Xiao Dong, Gui-Hua Li, Wei Wei, Yu-Han Sun Dec 2020

Effect Of Reaction Conditions On Cu⁃Catalyzed Co2 Electroreduction, Chang Zhu, Wei Chen, Yan-Fang Song, Xiao Dong, Gui-Hua Li, Wei Wei, Yu-Han Sun

Journal of Electrochemistry

Electrochemical conversion of carbon dioxide (CO2) driven by renewable electricity that can meet both carbon emission reduction and renewable energy utilization has been rapidly developed in recent years. Copper (Cu) catalyst has long been a promising candidate for CO2 electroreduction applications because of its natural abundance and specific capability of producing a substantial amount of C2 products. However, various metallic Cu electrodes reported have been significantly influenced by the adsorption of certain cation/anion ions, resulting in wide-span catalytic activities and selectivity for various products. In addition, a recent report demonstrated that by virtue of gas-diffusion flow cell …


Core-Shell Structured Ru@Ptru Nanoflower Electrocatalysts Toward Alkaline Hydrogen Evolution Reaction, Xue-Liang Wang, Yuan-Yuan Cong, Chen-Xi Qiu, Sheng-Jie Wang, Jia-Qi Qin, Yu-Jiang Song Dec 2020

Core-Shell Structured Ru@Ptru Nanoflower Electrocatalysts Toward Alkaline Hydrogen Evolution Reaction, Xue-Liang Wang, Yuan-Yuan Cong, Chen-Xi Qiu, Sheng-Jie Wang, Jia-Qi Qin, Yu-Jiang Song

Journal of Electrochemistry

Water electrolysis for hydrogen production is beneficial for solving the problem of energy crisis and environmental issues. It is necessary to study highly active and cost-effective catalysts toward hydrogen evolution reaction (HER) to reduce the consumption of noble metals. Herein, we report the synthesis of core-shell structured Ru@Pt0.24Ru nanoflowers electrocatalyst by stepwise reduction of Ru and Pt precursors in the mixture of oleylamine and benzyl alcohol at 160 oC. The average diameter of the resultant Ru@Pt0.24Ru was 16.5±4.0 nm with a bulk atomic ratio between Pt and Ru of 0.24:1 and a surface ratio of 3.3:1 …


Numerical Simulations Of Current And Temperature Distribution Of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based On The Theory Of Electric-Chemical-Thermal Coupling, Cheng-Rong Yu, Jian-Guo Zhu, Cong-Ying Jiang, Yu-Chen Gu, Ye-Xin Zhou, Zhuo-Bin Li, Rong-Min Wu, Zheng Zhong, Wan-Bing Guan Dec 2020

Numerical Simulations Of Current And Temperature Distribution Of Symmetrical Double-Cathode Solid Oxide Fuel Cell Stacks Based On The Theory Of Electric-Chemical-Thermal Coupling, Cheng-Rong Yu, Jian-Guo Zhu, Cong-Ying Jiang, Yu-Chen Gu, Ye-Xin Zhou, Zhuo-Bin Li, Rong-Min Wu, Zheng Zhong, Wan-Bing Guan

Journal of Electrochemistry

Solid oxide fuel cell (SOFC) is a high-efficient clean conversion device for future energy management. Because of the low antioxidant reduction ability and complex thermal stress, the structure of traditional asymmetrical thin anode-supported planar SOFC is easily to be broken under stack operating conditions. To overcome these defects, a new complete symmetrical SOFC based on double-sided cathodes was developed. To study the influences of gas flow direction and current collection mode on the cell performance inside stack, a numerical model was established by finite element method based on the theory of electro-thermo-chemo multiphysical coupling. By applying this model, the molar …


Facile Synthesis Of Nitrogen-Doped Graphene-Like Active Carbon Materials For High Performance Lithium-Sulfur Battery, Quan-Hua Meng, Wen-Wen Deng, Chang-Ming Li Oct 2020

Facile Synthesis Of Nitrogen-Doped Graphene-Like Active Carbon Materials For High Performance Lithium-Sulfur Battery, Quan-Hua Meng, Wen-Wen Deng, Chang-Ming Li

Journal of Electrochemistry

Lithium-sulphur (Li-S) battery is regarded as a promising energy storage device because of its high theoretical capacity. However, the low S utilization and short cycling life limit the commercial applications. In this work, nitrogen-doped graphene-like carbon (NGC) materials were synthesized by simply pyrolyzing and carbonizing the mixture of melamine (C3H6N6) and L-cysteine (C3H7NO2S). The graphene-like structure in NGC effectively buffered the volume change of S during the discharge/charge process and improved the cycling stability. Meanwhile, nitrogen-containing functional groups in NGC facilitated the transportation of ions and suppressed the …


A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang Oct 2020

A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang

Journal of Electrochemistry

The alkaline polymer electrolyte fuel cell (APEFC) has made appreciable progress in recent years but is still suffering performance loss during discharge with air as the oxidant. Several theories have been suggested to interpret the loss. However, efforts are still needed to reach a clear quantitative understanding. Based on the major experimental findings in combination with thermodynamics and kinetics of the reactions involved in the anode, this paper presents a model featuring layered carbonization in the anode and relevant grouped equations. The simulation results generated from the latter are compared with experiments, and possible principles to suppress the performance loss …


Fuel Cell Performance Of Non-Precious Metal Based Electrocatalysts, Yan-Feng Zhang, Fei Xiao, Guang-Yu Chen, Min-Hua Shao Aug 2020

Fuel Cell Performance Of Non-Precious Metal Based Electrocatalysts, Yan-Feng Zhang, Fei Xiao, Guang-Yu Chen, Min-Hua Shao

Journal of Electrochemistry

The commercialization of proton exchange membrane fuel cells (PEMFCs) is hindered by high cost and low durability of Pt based electrocatalysts. Developing efficient and durable non-precious metal catalysts is a promising approach to addressing these conundrums. Among them, transition metals dispersed in a nitrogen (N)-doped carbon support (M-N-C) show good oxygen reduction reaction activity. This article reviews recent progress in M-N-C catalysts development, focusing on the catalysts design, membrane electrode assembly fabrication, fuel cell performance, and durability testing. Template-assisted approach is an efficient way to synthesize M-N-C materials with homogeneously dispersed single atom active site and reduced metal particles, carbides …


Electrochemical Carbon Dioxide Reduction In Flow Cells, Jia Fan, Na Han, Yan-Guang Li Aug 2020

Electrochemical Carbon Dioxide Reduction In Flow Cells, Jia Fan, Na Han, Yan-Guang Li

Journal of Electrochemistry

Electrochemical carbon dioxide reduction (CO2RR) is an appealing approach to convert atmospheric CO2 to value-added fuels and industrial chemicals, and may play an important role during the transition to a carbon-neutral economy. In order to make this technology commercially viable, it is essential to pursue CO2RR in flow reactors instead of conventional H-type reactors, and to combine electrocatalyst development with system engineering. In this review, we overview the cell configurations and performance advantages of the two types of flow reactors, analyze their shortcomings, and discuss the effects of their different components including gas diffusion electrode …


Recent Progress In Bifunctional Catalysts For Zinc-Air Batteries, Neng-Neng Xu, Jin-Li Qiao Aug 2020

Recent Progress In Bifunctional Catalysts For Zinc-Air Batteries, Neng-Neng Xu, Jin-Li Qiao

Journal of Electrochemistry

Zinc-air battery has attracted great attention from researchers due to its high energy density and power density, which is expected to be widely used in energy conversion and storage. Air electrode as the core area of oxygen catalytic reaction is the focus of the entire zinc-air battery research. Recently, many research achievements have been made in non-noble metal bifunctional catalysts/electrodes with high activity, low cost and abundant species. In this review, we mainly focus on the reaction mechanism and the recent progress in non-noble metal oxide catalyst, carbon-based catalyst, and carbon-based transition metal compound composite and self-supporting electrode. In addition, …


Research Progress Of Metal-Nitrogen-Carbon Catalysts Toward Oxygen Reduction Reaction Inm Changchun Institute Of Applied Chemistry, Ming-Jun Xu, Jie Liu, Jun-Jie Ge, Chang-Peng Liu, Wei Xing Aug 2020

Research Progress Of Metal-Nitrogen-Carbon Catalysts Toward Oxygen Reduction Reaction Inm Changchun Institute Of Applied Chemistry, Ming-Jun Xu, Jie Liu, Jun-Jie Ge, Chang-Peng Liu, Wei Xing

Journal of Electrochemistry

The development of highly active and stable catalysts toward oxygen reduction reaction (ORR) has been facing severe challenges. In recent years, pyrolytic M-N-C catalysts and metal-organic framework derived materials made the performance of non-noble metal catalysts greatly improved, however, the molecular and atomic level understanding in the reaction active sites and the mechanism are still lacking. Here, we summarize the recent research progress made in the Changchun Institute of Applied Chemistry. We present a microporous metal-organic-framework confined strategy toward the preferable formation of ORR catalysts. Firstly, we studied the active site and proposed a new active site structure for the …


Electrolyte Tailoring For Electrocatalytic Reduction Of Stable Molecules, Jin-Han Li, Fang-Yi Cheng Aug 2020

Electrolyte Tailoring For Electrocatalytic Reduction Of Stable Molecules, Jin-Han Li, Fang-Yi Cheng

Journal of Electrochemistry

Reduction of stable molecules such as CO2 and N2 is important process in electrochemical energy conversion and storage technologies for electrofuels production. However, for the inert nature of CO2/N2 molecule and competitive proton reduction in conventional aqueous electrolytes, selective electrochemical carbon/nitrogen fixation suffers from high overpotential, low reaction rate and low selectivity. While addressing these issues has witnessed substantial advances in electrocatalysts, much less attention has been placed on the electrolytes, which play an important role in regulating the local environment and thus the performance of catalysts under operating conditions. Rational design of electrolytes has …


Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang Aug 2020

Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang

Journal of Electrochemistry

The electrochemical conversion of CO2 to chemical raw material for further utilization shows promising future to alleviate global warming and realize carbon cycle in nature, which is of great significance to the green chemistry and sustainable development. This review briefly introduces the advantages of CO2 electrochemical reduction (CO2ER) and its basic reaction principles, and summarizes the recent progress in a series of activity enhancement strategies based on nanosized metal catalysts. The influences of alloy effect, interface engineering, synergistic effect, surface defect engineering and support effect on the catalytic performance of nanosized metals for CO2ER …


Poly(Ethylene Oxide) Based Polymer Electrolytes For All-Solid-State Li-S Batteries, Xue Li, Zheng-Liang Gong Jun 2020

Poly(Ethylene Oxide) Based Polymer Electrolytes For All-Solid-State Li-S Batteries, Xue Li, Zheng-Liang Gong

Journal of Electrochemistry

In recent years, research on lithium-sulfur (Li-S) batteries has received much attention because the sulfur positive electrode and the lithium metal negative electrode produce a high theoretical specific capacity (lithium metal ~ 3800 mAh·g-1, sulfur ~ 1675 mAh·g-1). In addition, sulfur is considered to be the most promising cathode material for secondary lithium batteries, due to its advantages of low price and environmental friendly. However, the practical application of conventional liquid Li-S batteries is still obstructed by several critical issues, such as lithium ploysulfides shuttle effect, long-term stability of lithium metal anode with organic liquid electrolytes, and the safety concerns …


Preparation Of Α-Hydroxylated Acetal From 2-Butanone By Indirect Electrooxidation, Hai-Qing Huang, Ye Miao, Xin-Sheng Zhang Jun 2020

Preparation Of Α-Hydroxylated Acetal From 2-Butanone By Indirect Electrooxidation, Hai-Qing Huang, Ye Miao, Xin-Sheng Zhang

Journal of Electrochemistry

Acetoin (3-hydroxy-2-butanone) is an important food spice. As a platform compound, it is widely used in medicine, tobacco, cosmetics, chemical material and other industries. In this paper, α-hydroxylated acetal, an intermediate of acetoin, was prepared from 2-butanone by indirect electrooxidation in the plate and frame electrolytic cell, in which graphite plates were used as both an anode and a cathode, while KOH as an electrolyte and KI as a catalyst. Acetoin could be prepared by hydrolysis in acidic aqueous solution from acetoin intermediate. The effects of current density, electrolyte flow rate between the plates, 2-butanone concentration and electrolysis temperature …


Stability Studies For A Membrane Electrode Assembly Type Co2 Electro-Reduction Electrolytic Cell, Qing Mao, Bing-Yu Li, Wei-Yun Jing, Jian Zhao, Song Liu, Yan-Qiang Huang, Zhao-Long Du Jun 2020

Stability Studies For A Membrane Electrode Assembly Type Co2 Electro-Reduction Electrolytic Cell, Qing Mao, Bing-Yu Li, Wei-Yun Jing, Jian Zhao, Song Liu, Yan-Qiang Huang, Zhao-Long Du

Journal of Electrochemistry

Electro-catalytic reduction is an efficient way to achieve resourcable transformation of CO2, which is one of the important techniques to solve the global environmental problems originated from excessive CO2 emission. In this study, a membrane electrode assembly(MEA) type CO2 electro-reduction electrolytic cell was constucted, which enables CO2 feeding and real-time KHCO3 aqueous updating on both sides of the cathode gas diffusion electrode (GDE). By means of the electrolytic cell, effects of KHCO3 concentration and updating inside the liquid electrolytic chamber on CO2 electro-reduction activity, production distribution and stability were investigated. The experimental …


Synthesis And Raman Study Of Hollow Core-Shell Ni1.2Co0.8P@N-C As An Anode Material For Sodium-Ion Batteries, Jia-Hui Chen, Xiao-Bin Zhong, Chao He, Xiao-Xiao Wang, Qing-Chi Xu, Jian-Feng Li Jun 2020

Synthesis And Raman Study Of Hollow Core-Shell Ni1.2Co0.8P@N-C As An Anode Material For Sodium-Ion Batteries, Jia-Hui Chen, Xiao-Bin Zhong, Chao He, Xiao-Xiao Wang, Qing-Chi Xu, Jian-Feng Li

Journal of Electrochemistry

With the increasing demand for large-scale energy storage, great progress has been made in discovering new advanced energy storage materials. Sodium-ion batteries (SIBs) have attracted much attention in recent years due to their use of abundant sodium resources and their comparable electrochemical capacity to lithium-ion batteries (LIBs). In this paper, we developed novel hollow core-shell Ni-Co bimetallic phosphide nanocubes with N-doped carbon coatings (Ni1.2Co0.8P@N-C) as the anode material for SIBs. The material was synthesized through a low-temperature phosphorization method using resorcinol formaldehyde (RF) resin coating with a Ni-Co Prussian blue analogue (PBA) as a template and …


Preparations Of Nano-MnoX/Ti Electrocatalytic Membrane Electrode For Catalytic Oxidation Of Cyclohexane Using Intermittent Electrodeposition, Xue Zhou, Hong Wang, Zhen Yin, Yu-Jun Zhang, Jian-Xin Li Jun 2020

Preparations Of Nano-MnoX/Ti Electrocatalytic Membrane Electrode For Catalytic Oxidation Of Cyclohexane Using Intermittent Electrodeposition, Xue Zhou, Hong Wang, Zhen Yin, Yu-Jun Zhang, Jian-Xin Li

Journal of Electrochemistry

Cyclohexanone and cyclohexanol (KA oil) obtained from highly selective oxidation of cyclohexane (CHA) show important industrial value and application prospects. In this work, the intermittent electrodeposition was developed to prepare nano-MnOx catalyst loading porous tubular titanium membrane electrode (MnOx/Ti), which was employed to constitute an electro-catalytic membrane reactor (ECMR) for the oxidation of cyclohexane to produce cyclohexanol and cyclohexanone. The surface morphology, crystal structure and electrochemical property of the catalysts were characterized by FESEM, XRD and electrochemical workstation, respectively. The results show that the catalyst prepared by the intermittent electrodeposition displayed nano-flower-like γ-MnO2. Compared …


Electrochemical Oxidation Of Metal Chromium In Odium Hydroxide Aqueous Solution, Ping Han, Hai-Tao Feng, Ya-Ping Dong, Sen Tian, Bo Zhang, Wu Li Jun 2020

Electrochemical Oxidation Of Metal Chromium In Odium Hydroxide Aqueous Solution, Ping Han, Hai-Tao Feng, Ya-Ping Dong, Sen Tian, Bo Zhang, Wu Li

Journal of Electrochemistry

Ferrochrome electrolysis technology is a novel method for preparing sodium chromate (Na2CrO4). Although the method performs well at soft reaction conditions, controllable process, environmentally friendly production process, etc., the electrochemical oxidation process of metal chromium in NaOH aqueous electrolyte is still unclear. At present, there are few research articles about specific electrochemical oxidation of metal chromium in NaOH aqueous electrolyte. It is, therefore, meaningful to carry out the research in electrochemical oxidation mechanism of chromium. The electrochemical oxidation of metal chromium in 0.01 mol·L-1 ~ 10 mol·L-1 NaOH aqueous electrolytes at 20 °C was studied by …


Materials, Micro-Stacks And Related Applications Of Single-Chamber Solid Oxide Fuel Cells, Zhe Lv, Bo Wei, Zhi-Hong Wang, Yan-Ting Tian Apr 2020

Materials, Micro-Stacks And Related Applications Of Single-Chamber Solid Oxide Fuel Cells, Zhe Lv, Bo Wei, Zhi-Hong Wang, Yan-Ting Tian

Journal of Electrochemistry

Single-chamber solid oxide fuel cell (SC-SOFC) is a special type of fuel cells, in which both an anode and a cathode are placed in one chamber. Its working principle relies on the selective catalytic activity of the electrodes towards fuel and oxidant in a gas mixture, leading to the generation of an electromotive force. Because of its unique principle and structure, SC-SOFC has many advantages such as sealing-free, easy stacking, quick start-up and no carbon deposition, thus, it possesses large potential in application. Herein, the principles and characteristics of SC-SOFC are introduced. Furthermore, the SC-SOFC materials, micro-stack design, degeneration mechanisms …


Research Progress Of Fuel Electrode In Oxide-Ion Conducting Solid Oxide Electrolysers, Ling-Ting Ye, Kui Xie Apr 2020

Research Progress Of Fuel Electrode In Oxide-Ion Conducting Solid Oxide Electrolysers, Ling-Ting Ye, Kui Xie

Journal of Electrochemistry

Solid oxide electrolysers are now attracting much more attentions because they can efficiently produce fuels by electrolyzing H2O/CO2. In this paper, a comprehensive introduction to the recent progress in the development of fuel electrode (cathode) materials is provided. The advantages, disadvantages and development trend towards various cathode materials are pointed out. The key scientific and technological problems in this field are emphasized.


Syntheses And Properties Of Ta 5+ Doped Li7La3Zr2O12, Feng-Feng Peng, Shi-You Li, Tong-Tong Geng, Chun-Lei Li, Shuang-Wei Zeng Apr 2020

Syntheses And Properties Of Ta 5+ Doped Li7La3Zr2O12, Feng-Feng Peng, Shi-You Li, Tong-Tong Geng, Chun-Lei Li, Shuang-Wei Zeng

Journal of Electrochemistry

The tantalum ion (Ta 5+) doped garnet-type inorganic solid electrolyte Ta-LLZO was prepared by solid state reaction, and the effect of doping amount on the properties of the materials was investigated. The materials were characterized by X-ray diffraction (XRD), field emission electron scanning microscopy (FESEM) and electrochemical impedance spectroscopy (EIS). And the cycle stability was tested by assembly of LiFePO4//LLZTO//Li all solid lithium battery. The results show that with the increase of Ta 5+ doping amount, the material appeared to form a single cubic phase structure. When the Ta 5+ doping content became 14.09wt.%, x=0.3, the room …


Direct Carbon Solid Oxide Fuel Cells, Jiang Liu, Xiao-Min Yan Apr 2020

Direct Carbon Solid Oxide Fuel Cells, Jiang Liu, Xiao-Min Yan

Journal of Electrochemistry

Carbon is richly reserved in coal, biomasses, and many other nature resources. It is usually used as an energy source through oxygen oxidation reaction. The oxidation is generally realized through combustion which causes serious air pollution. Besides, the conversion efficiency of generating electricity through the combustion process is limited by Carnot efficiency. A direct carbon solid oxide fuel cell (DC-SOFC) is a solid oxide fuel cell (SOFC) directly operated with solid carbon as the fuel. It can convert the chemical energy of carbon into electricity with high efficiency. The concentration of produced CO2 from a DC-SOFC is so high …


Research Progress In Ethane Dehydrogenation To Cogenerate Power And Value-Added Chemicals In Solid Oxide Fuel Cells, Yun Fan, Qi Wang, Jun Li, Jing-Li Luo, Xian-Zhu Fu Apr 2020

Research Progress In Ethane Dehydrogenation To Cogenerate Power And Value-Added Chemicals In Solid Oxide Fuel Cells, Yun Fan, Qi Wang, Jun Li, Jing-Li Luo, Xian-Zhu Fu

Journal of Electrochemistry

Increasing supplies of methane/shale gas have promoted global development of higher value chemicals such as ethylene production by ethane, which dramatically changes the markets of petrochemical industry. Clean and efficient transformation of ethane into higher value chemicals has far-reaching significance. Ethylene production through ethane steam cracking is a relatively matured technology for industrial production. However, the process consumes large amounts of energy and the presence of carbon deposition becomes a serious problem which is difficult to be solved. The cogenerated energy-chemicals solid oxide fuel cells have been widely studied because fuel gas can be converted into high-value chemicals via spontaneous …


Recent Advances Of Co2 Electrochemical Reduction In Solid Oxide Electrolysis Cells, Yi-Hang Li, Chang-Rong Xia Apr 2020

Recent Advances Of Co2 Electrochemical Reduction In Solid Oxide Electrolysis Cells, Yi-Hang Li, Chang-Rong Xia

Journal of Electrochemistry

Solid oxide electrolysis cells (SOECs) have stimulated wide interests for their promising application in the reduction of CO2 emissions and the storage of renewable energy. Here, the advances made in the development of cathode materials including cermets and perovskite oxides in our research group, are summarized, along with the design of cell configurations. The electrochemical kinetics and performances of cathodes and cells are discussed and analyzed. It is expected that this brief review offers critical insights and useful guidelines for developing superior electrodes and SOECs in the future.


Perovskite Catalysts For Fuel Reforming In Sofc:A Review And Perspective, Tong Wei, Jian Li, Li-Chao Jia, Bo Chi, Jian Pu Apr 2020

Perovskite Catalysts For Fuel Reforming In Sofc:A Review And Perspective, Tong Wei, Jian Li, Li-Chao Jia, Bo Chi, Jian Pu

Journal of Electrochemistry

Solid oxide fuel cell (SOFC) is a generating device by electrochemical reaction to transfer the chemical energy of fossil fuels (coal, oil and gas, etc.), the biomass fuel or other hydrocarbon fuels directly into electricity with higher energy conversion efficiency and lower pollution, which is recognized to be efficient green energy technology in the 21st century. However, when hydrocarbons are directly used as fuel, carbon deposition is easy to occur in nickel-based anode, thus, losing electrochemical catalytic activity. Fuel pre-reforming on the outside of the anode is an effective solution, which strongly relies on highly efficient and stable reforming catalysts. …


Preparation And Characterization Of Cathode Supported Solid Oxide Fuel Cell, Xiao-Nan Bao, Guang-Jun Zhang, Shao-Rong Wang Apr 2020

Preparation And Characterization Of Cathode Supported Solid Oxide Fuel Cell, Xiao-Nan Bao, Guang-Jun Zhang, Shao-Rong Wang

Journal of Electrochemistry

A site deficient (La0.8Sr0.2)0.95MnO3 (LSM95) powder was synthesized by solid state reaction as a cathode material. The commercial Zr0.9Sc0.1SO1.95 (SSZ) was selected as an electrolyte material and La0.8Sr0.2Cr0.5Mn0.5O3- (LSCrM) was synthesized by sol-gel method as an anode material. Accordingly, single cells of LSCrM-CeO2|SSZ|3YSZ-LSM95 were prepared by tape casting, sintering and impregnation. The single cell test results for LSCrM-CeO2|SSZ|3YSZ-LSM95 with 0.11 g·cm -2 CeO2 and using CH4 as a fuel showed the power …


Nio@Rgo Supported Palladium And Silver Nanoparticles As Electrocatalysts For Oxygen Reduction Reaction, Shuo Yao, Tai-Zhong Huang, Rizwan Haider, Heng-Yi Fang, Jie-Mei Yu, Zhan-Kun Jiang, Dong Liang, Yue Sun, Xian-Xia Yuan Apr 2020

Nio@Rgo Supported Palladium And Silver Nanoparticles As Electrocatalysts For Oxygen Reduction Reaction, Shuo Yao, Tai-Zhong Huang, Rizwan Haider, Heng-Yi Fang, Jie-Mei Yu, Zhan-Kun Jiang, Dong Liang, Yue Sun, Xian-Xia Yuan

Journal of Electrochemistry

For pervasive applications of fuel cells, highly efficient and economical materials are required to replace Pt-based catalysts for oxygen reduction reaction (ORR). In this study, the NiO@rGO, Pd-NiO@rGO and Ag-NiO@rGO nanoparticles were synthesized, and their catalytic performances toward ORR were investigated. The results revealed that all the three materials were capable of catalyzing ORR, but both the Pd-NiO@rGO and Ag-NiO@rGO showed the better performances compared with the NiO@rGO in terms of the reaction pathway being 4-electron process, the increases of the onset potential and the intermediate yielding rate, as well as the extended stability. Moreover, the effect of Pd modification …


Development Status And Prospects Of Hydrogen Production By High Temperature Solid Oxide Electrolysis, Wen-Qiang Zhang, Bo Yu Apr 2020

Development Status And Prospects Of Hydrogen Production By High Temperature Solid Oxide Electrolysis, Wen-Qiang Zhang, Bo Yu

Journal of Electrochemistry

Solid oxide electrolysis cell is an advanced energy conversion device with high efficiency, simplicity, flexibility, and environmental friendliness. It is currently a research hotspot in the international energy field. This paper introduces and analyzes the basic principles, key materials, system components and developments of solid oxidation electrolysis cells. Furthermore, the recent research progresses, challenges and future development directions in solid oxidation electrolysis cells in the field of high-efficiency hydrogen production are summarized and outlined.


Research Progresses In Polymeric Proton Exchange Membranes For Fuel Cells, Xu-Po Liu, Yun-Feng Zhang, Shao-Feng Deng, De-Li Wang, Han-Song Cheng Feb 2020

Research Progresses In Polymeric Proton Exchange Membranes For Fuel Cells, Xu-Po Liu, Yun-Feng Zhang, Shao-Feng Deng, De-Li Wang, Han-Song Cheng

Journal of Electrochemistry

Proton exchange membrane (PEM) is one of the key components in PEM fuel cells, which possesses the function of separating the cathode and anode, affording proton transport channels and preventing fuel permeability. The property of PEM significantly influences the performance and service life of fuel cells. Nowadays, the commercially used Nafion membranes have the shortcomings of serious fuel permeability, low proton conductivity at elevated temperature and high price, which limits the rapid development of PEM fuel cells. Therefore, it seems to be urgent to develop novel PEMs with low cost and good comprehensive properties. Polymeric proton exchange membrane is an …


Recent Progress In The Mechanistic Understanding Of Co2 Reduction On Copper, Matthew M Sartin, Wei Chen, Fan He, Yan-Xia Chen Feb 2020

Recent Progress In The Mechanistic Understanding Of Co2 Reduction On Copper, Matthew M Sartin, Wei Chen, Fan He, Yan-Xia Chen

Journal of Electrochemistry

In this review, we present the major developments in the understanding of the mechanisms of the electrochemical reduction of CO2 from a historical perspective. Most of the work discussed in this review was carried out at copper electrodes, as this is the only material at which hydrocarbons are produced in reasonable quantities. The emphasis focuses on the differentiation of mechanisms for the generation of C1 and C2 products as well as factors and methods for controlling the product selectivity of CO2 reduction. We have highlighted ambiguities, assumptions, and important methodologies, such as differential electrochemical mass spectrometry and electrochemical …


Challenges In The Activity And Stability Of Pt-Based Catalysts Toward Orr, Tuo Zhao, Er-Gui Luo, Xian Wang, Jun-Jie Ge, Chang-Peng Liu, Wei Xing Feb 2020

Challenges In The Activity And Stability Of Pt-Based Catalysts Toward Orr, Tuo Zhao, Er-Gui Luo, Xian Wang, Jun-Jie Ge, Chang-Peng Liu, Wei Xing

Journal of Electrochemistry

The development of highly efficient oxygen reduction reaction (ORR) catalysts is the key to the commercialization of fuel cells, where the sluggish ORR reaction rate needs to be overcome by adjusting the intermediates adsorption energies on the catalytic surfaces. To-date, platinum (Pt)-based materials are the-state-of-the-art catalysts in terms of both activity and stability in ORR, making them the preferred choice for commercial applications. However, the high cost of Pt-based catalysts limits their widespread use, leading to massive effects paid in reducing Pt loading, improving catalyst activity and stability. This article illustrates the challenges in the ORR reaction and introduces the …