Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Robotics

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 41

Full-Text Articles in Engineering

The Mechanical Development For An Autonomous Forest Service Robot, James P. Walker Dec 2019

The Mechanical Development For An Autonomous Forest Service Robot, James P. Walker

Honors College Theses

Georgia’s forests are under threat from numerous invasive species of plant, both herbaceous and woody. A primary factor in the invasive potential of any given non-native plant is the lack of natural predators and rapid reseed and regrowth cycles. To combat invasive plants, this thesis proposes an artificial, robotic predator to provide a means of controlling invasive species. Although autonomous robots are currently being developed for similar agricultural purposes, none have emerged for forestry related tasks, such as proposed in this work. The chassis, inspired by rocker bogie and similar suspension systems, has been redesigned to have eight wheels, to …


Robot Motion Planning In Dynamic Environments, Hao-Tien Lewis Chiang Dec 2019

Robot Motion Planning In Dynamic Environments, Hao-Tien Lewis Chiang

Computer Science ETDs

Robot motion planning in dynamic environments is critical for many robotic applications, such as self-driving cars, UAVs and service robots operating in changing environments. However, motion planning in dynamic environments is very challenging as this problem has been shown to be NP-Hard and in PSPACE, even in the simplest case. As a result, the lack of safe, efficient planning solutions for real-world robots is one of the biggest obstacles for ubiquitous adoption of robots in everyday life. Specifically, there are four main challenges facing motion planning in dynamic environments: obstacle motion uncertainty, obstacle interaction, complex robot dynamics and noise, and …


An Approach To Fast Multi-Robot Exploration In Buildings With Inaccessible Spaces, Matt Mcneill, Damian Lyons Dec 2019

An Approach To Fast Multi-Robot Exploration In Buildings With Inaccessible Spaces, Matt Mcneill, Damian Lyons

Faculty Publications

The rapid exploration of unknown environments is a common application of autonomous multi-robot teams. For some types of exploration missions, a mission designer may possess some rudimentary knowledge about the area to be explored. For example, the dimensions of a building may be known, but not its floor layout or the location of furniture and equipment inside. For this type of mission, the Space- Based Potential Field (SBPF) method is an approach to multirobot exploration which leverages a priori knowledge of area bounds to determine robot motion. Explored areas and obstacles exert a repulsive force, and unexplored areas exert an …


Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley Dec 2019

Involuntary Signal-Based Grounding Of Civilian Unmanned Aerial Systems (Uas) In Civilian Airspace, Keith Conley

Master's Theses

This thesis investigates the involuntary signal-based grounding of civilian unmanned aerial systems (UAS) in unauthorized air spaces. The technique proposed here will forcibly land unauthorized UAS in a given area in such a way that the UAS will not be harmed, and the pilot cannot stop the landing. The technique will not involuntarily ground authorized drones which will be determined prior to the landing. Unauthorized airspaces include military bases, university campuses, areas affected by a natural disaster, and stadiums for public events. This thesis proposes an early prototype of a hardware-based signal based involuntary grounding technique to handle the problem …


Flex-Ro: A Robotic High Throughput Field Phenotyping System, Joshua N. Murman Dec 2019

Flex-Ro: A Robotic High Throughput Field Phenotyping System, Joshua N. Murman

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Research in agriculture is critical to developing techniques to meet the world’s demand for food, fuel, fiber, and feed. Optimization of crop production per unit of land requires scientists across disciplines to collaborate and investigate new areas of science and tools for data collection. The use of robotics has been adopted in several industries to supplement labor, and accurately perform repetitious tasks. However, the use of autonomous robots in commercial agricultural production is still limited. The Flex-Ro (Flexible structured Robotic platform) was developed for use in large area fields as a multipurpose tool to perform monotonous agricultural tasks.

This work …


Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque Dec 2019

Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Landing an unmanned aerial vehicle (UAV) on a moving platform is a challenging task that often requires exact models of the UAV dynamics, platform characteristics, and environmental conditions. In this thesis, we present and investigate three different machine learning approaches with varying levels of domain knowledge: dynamics randomization, universal policy with system identification, and reinforcement learning with no parameter variation. We first train the policies in simulation, then perform experiments both in simulation, making variations of the system dynamics with wind and friction coefficient, then perform experiments in a real robot system with wind variation. We initially expected that providing …


Robot Simulation Analysis, Jacob Miller, Jeremy Evert Nov 2019

Robot Simulation Analysis, Jacob Miller, Jeremy Evert

Student Research

• Simulate virtual robot for test and analysis

• Analyze SLAM solutions using ROS

• Assemble a functional Turtlebot

• Emphasize projects related to current research trajectories for NASA, and general robotics applications


Trunk Velocity-Dependent Light Touch Reduces Postural Sway During Standing, Anirudh Saini, Devin Michael Burns, Darian Emmett, Yun Seong Song Nov 2019

Trunk Velocity-Dependent Light Touch Reduces Postural Sway During Standing, Anirudh Saini, Devin Michael Burns, Darian Emmett, Yun Seong Song

Psychological Science Faculty Research & Creative Works

Light Touch (LT) has been shown to reduce postural sway in a wide range of populations. While LT is believed to provide additional sensory information for balance modulation, the nature of this information and its specific effect on balance are yet unclear. In order to better understand LT and to potentially harness its advantages for a practical balance aid, we investigated the effect of LT as provided by a haptic robot. Postural sway during standing balance was reduced when the LT force (~ 1 N) applied to the high back area was dependent on the trunk velocity. Additional information on …


A Comparison Of Contextual Bandit Approaches To Human-In-The-Loop Robot Task Completion With Infrequent Feedback, Matt Mcneill, Damian Lyons Nov 2019

A Comparison Of Contextual Bandit Approaches To Human-In-The-Loop Robot Task Completion With Infrequent Feedback, Matt Mcneill, Damian Lyons

Faculty Publications

Artificially intelligent assistive agents are playing an increased role in our work and homes. In contrast with currently predominant conversational agents, whose intelligence derives from dialogue trees and external modules, a fully autonomous domestic or workplace robot must carry out more complex reasoning. Such a robot must make good decisions as soon as possible, learn from experience, respond to feedback, and rely on feedback only as much as necessary. In this research, we narrow the focus of a hypothetical robot assistant to a room tidying task in a simulated domestic environment. Given an item, the robot chooses where to put …


Do After-School Robotics Programs Expand The Pipeline Into Stem Majors In College?, Cathy Burack, Alan Melchior, Matthew Hoover Oct 2019

Do After-School Robotics Programs Expand The Pipeline Into Stem Majors In College?, Cathy Burack, Alan Melchior, Matthew Hoover

Journal of Pre-College Engineering Education Research (J-PEER)

One result of the growing concerns over the numbers of young people moving into science, technology, engineering and mathematics (STEM)-related careers has been the expansion of formal and informal STEM education programming for pre-college youth, from elementary school through high school. While the number of programs has grown rapidly, there is little research on their long-term impacts on participant education and career trajectories. This paper presents interim findings from a multi-year longitudinal study of three national after-school robotics programs that engage students in designing, building, and competing complex robots with the goal of inspiring long-term interest in STEM. Focusing on …


Audio Beat Detection With Application To Robot Drumming, Michael James Engstrom Oct 2019

Audio Beat Detection With Application To Robot Drumming, Michael James Engstrom

Dissertations and Theses

This Drumming Robot thesis demonstrates the design of a robot which can play drums in rhythm to an external audio source. The audio source can be either a pre-recorded .wav file or a live sample .wav file from a microphone. The dominant beats-per-minute (BPM) of the audio would be extracted and the robot would drum in time to the BPM. A Fourier Analysis-based BPM detection algorithm, developed by Eric Scheirer (Tempo and beat analysis of acoustical musical signals)i was adopted and implemented. In contrast to other popular algorithms, the main advantage of Scheirer's algorithm is it has …


Exercises Integrating High School Mathematics With Robot Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal Oct 2019

Exercises Integrating High School Mathematics With Robot Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal

Computer Science: Faculty Publications and Other Works

This paper presents progress in developing exercises for high school students incorporating level-appropriate mathematics into robotics activities. We assume mathematical foundations ranging from algebra to precalculus, whereas most prior work on integrating mathematics into robotics uses only very elementary mathematical reasoning or, at the other extreme, is comprised of technical papers or books using calculus and other advanced mathematics. The exercises suggested are relevant to any differerential-drive robot, which is an appropriate model for many different varieties of educational robots. They guide students towards comparing a variety of natural navigational strategies making use of typical movement primitives. The exercises align …


Generic Project Plan For A Mobile Robotics System, Jay Anilkumar Joshi Oct 2019

Generic Project Plan For A Mobile Robotics System, Jay Anilkumar Joshi

Masters Theses & Specialist Projects

This thesis discussed the mobile land robots for the robotic competitions. The topics discussed in this thesis are robotic systems, mobile land robots, robot competitions, and example of robot designs. Question-answer sections are added to help understand the requirements to build the robot. Examples include three different teams who participated in different robotic competitions to provide a context for robotic competitions. The thesis was divided into the five chapters. The first and second chapters explained the different kind of robotics systems, and opportunities. The focus of the information was the mobile land robots, which was explained under the third chapter, …


Communication Capability For A Simulation-Based Test And Evaluation Framework For Autonomous Systems, Ntiana Sakioti Oct 2019

Communication Capability For A Simulation-Based Test And Evaluation Framework For Autonomous Systems, Ntiana Sakioti

Computational Modeling & Simulation Engineering Theses & Dissertations

The design and testing process for collaborative autonomous systems can be extremely complex and time-consuming, so it is advantageous to begin testing early in the design. A Test & Evaluation (T&E) Framework was previously developed to enable the testing of autonomous software at various levels of mixed reality. The Framework assumes a modular approach to autonomous software development, which introduces the possibility that components are not in the same stage of development. The T&E Framework allows testing to begin early in a simulated environment, with the autonomous software methodically migrating from virtual to augmented to physical environments as component development …


Foot-Controlled Supernumerary Robotic Arm: Foot Interfaces And Human Abilities, Brandon William Rudolph Aug 2019

Foot-Controlled Supernumerary Robotic Arm: Foot Interfaces And Human Abilities, Brandon William Rudolph

Graduate Theses - Mechanical Engineering

A supernumerary robotic limb (SRL) is a robotic limb that can act as an extra arm or leg for a human user. An unsolved issue with SRLs is how to operate them well. One possibility is to control an SRL with the foot, which offers the benefit of a third arm because the user’s arms remain unoccupied. While hand interfaces are common, foot interfaces are not well understood. Developing a good foot interface is challenging because of differences between feet and hands, such as the larger inertia of the leg. This thesis presents work to determine some design principles for …


System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas Jul 2019

System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas

Mechanical Engineering Theses

One of the important surgical tools in spinal surgery is the C-Arm X-ray System. The C-Arm is a large “C” shaped and manually maneuvered arm that provides surgeons and X-ray technicians the ability to take quick quality X-rays during surgery. Because of its five degrees of freedom, the C-Arm can be manually maneuvered around the patient to provide many angles and perspectives, ensuring surgical success.

This system works fine for most surgical procedures but falls short when the C-Arm must be moved out of the way for complicated surgical procedures.

The aim of this thesis is to develop an accurate …


Design Of A Canine Inspired Quadruped Robot As A Platform For Synthetic Neural Network Control, Cody Warren Scharzenberger Jul 2019

Design Of A Canine Inspired Quadruped Robot As A Platform For Synthetic Neural Network Control, Cody Warren Scharzenberger

Dissertations and Theses

Legged locomotion is a feat ubiquitous throughout the animal kingdom, but modern robots still fall far short of similar achievements. This paper presents the design of a canine-inspired quadruped robot named DoggyDeux as a platform for synthetic neural network (SNN) research that may be one avenue for robots to attain animal-like agility and adaptability. DoggyDeux features a fully 3D printed frame, 24 braided pneumatic actuators (BPAs) that drive four 3-DOF limbs in antagonistic extensor-flexor pairs, and an electrical system that allows it to respond to commands from a SNN comprised of central pattern generators (CPGs). Compared to the previous version …


Control Of Rigid Robots With Large Uncertainties Using The Function Approximation Technique, Donald Ebeigbe Jul 2019

Control Of Rigid Robots With Large Uncertainties Using The Function Approximation Technique, Donald Ebeigbe

ETD Archive

This dissertation focuses on the control of rigid robots that cannot easily be modeled due to complexity and large uncertainties. The function approximation technique (FAT), which represents uncertainties as finite linear combinations of orthonormal basis functions, provides an alternate form of robot control - in situations where the dynamic equation cannot easily be modeled - with no dependency on the use of model information or training data. This dissertation has four aims - using the FAT - to improve controller efficiency and robustness in scenarios where reliable mathematical models cannot easily be derived or are otherwise unavailable. The first aim …


Evaluation Of Field Of View Width In Stereo-Vision-Based Visual Homing, Damian Lyons, Benjamin Barriage, Luca Del Signore Jul 2019

Evaluation Of Field Of View Width In Stereo-Vision-Based Visual Homing, Damian Lyons, Benjamin Barriage, Luca Del Signore

Faculty Publications

Visual homing is a local navigation technique used to direct a robot to a previously seen location by comparing the image of the original location with the current visual image. Prior work has shown that exploiting depth cues such as image scale or stereo-depth in homing leads to improved homing performance. While it is not unusual to use a panoramic field of view (FOV) camera in visual homing, it is unusual to have a panoramic FOV stereo-camera. So, while the availability of stereo-depth information may improve performance, the concomitant-restricted FOV may be a detriment to performance, unless specialized stereo hardware …


Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin Jul 2019

Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin

Honors Projects

A 3D printed hand and arm prosthetic was created from the idea of adding bionic elements while keeping the cost low. It was designed based on existing models, desired functions, and materials available. A tilt sensor keeps the hand level, two motors move the wrist in two different directions, a limit switch signals the fingers to open and close, and another motor helps open and close the fingers. All sensors and motors were built on a circuit board, programmed using an Arduino, and powered by a battery. Other supporting materials include metal brackets, screws, guitar strings, elastic bands, small clamps, …


A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim Jun 2019

A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim

LSU Master's Theses

A multi-agent system can be defined as a coordinated network of mobile, physical agents that execute complex tasks beyond their individual capabilities. Observations of biological multi-agent systems in nature reveal that these ``super-organisms” accomplish large scale tasks by leveraging the inherent advantages of a coordinated group. With this in mind, such systems have the potential to positively impact a wide variety of engineering applications (e.g. surveillance, self-driving cars, and mobile sensor networks). The current state of research in the area of multi-agent systems is quickly evolving from the theoretical development of coordination control algorithms and their computer simulations to experimental …


Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman Jun 2019

Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman

Master's Theses

The application of robotics in cluttered and dynamic environments provides a wealth of challenges. This thesis proposes a deep reinforcement learning based system that determines collision free navigation robot velocities directly from a sequence of depth images and a desired direction of travel. The system is designed such that a real robot could be placed in an unmapped, cluttered environment and be able to navigate in a desired direction with no prior knowledge. Deep Q-learning, coupled with the innovations of double Q-learning and dueling Q-networks, is applied. Two modifications of this architecture are presented to incorporate direction heading information that …


Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji Jun 2019

Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji

Honors Theses

Soft robotics is an emerging field of research due to its potential to explore and operate in unstructured, rugged, and dynamic environments. However, the properties that make soft robots compelling also make them difficult to robustly control. Here at Union, we developed the world’s first wireless soft tensegrity robot. The goal of my thesis is to explore effective and efficient methods to explore the diverse behavior our tensegrity robot. We will achieve that by applying state-of-art machine learning technique and a novelty search algorithm.


Development Of A Foot Interface To Control Supernumerary Robotics Limbs, Emma Morris May 2019

Development Of A Foot Interface To Control Supernumerary Robotics Limbs, Emma Morris

Rose-Hulman Summer Undergraduate Research Fellowships

Supernumerary robotic limbs (SRLs) can be used to provide a person with extra arms to help with difficult tasks. For example, a task that normally requires three hands to complete could be accomplished by just one person with an SRL. One way to control an SRL and still leave both hands available is to use the foot. This paper describes two parts of developing this foot interface: characterizing the range of forces that the foot can apply, and prototyping systems for different control methods. First, a small sample of data was collected to learn how much force the foot can …


Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford May 2019

Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford

Graduate Theses and Dissertations

This thesis entails motor control system analysis, design, and optimization for the University of Arkansas NASA Robotic Mining Competition robot. The open-loop system is to be modeled and simulated in order to achieve a desired rapid, yet smooth response to a change in input. The initial goal of this work is to find a repeatable, generalized step-by-step process that can be used to tune the gains of a PID controller for multiple different operating points. Then, sensors are to be modeled onto the robot within a feedback loop to develop an error signal and to make the control system self-corrective …


Design Of A Scara Based Mobile 3d Printing Platform, Zachary Hyden May 2019

Design Of A Scara Based Mobile 3d Printing Platform, Zachary Hyden

Mechanical Engineering Undergraduate Honors Theses

Currently 3D printers rely heavily on people to run them, there is no automatic way to start a new print after one has finished. On top of this 3D printers are limited in the area they can print on. Even though the additive manufacturing market is rapidly growing and is increasingly being used in product manufacturing there has yet to be a solution to this problem. This research proposes using mobile 3D printing robots to solve both of these issues. The proposed prototype utilizes a Selective Compliance Assembly Robot Arm (SCARA) based robot capable of cooperatively manufacturing parts. This allows …


Design And Creation Of A System Of Machines To Automate Quality Control Processes For Atms, Miguel D. Pedrozo Apr 2019

Design And Creation Of A System Of Machines To Automate Quality Control Processes For Atms, Miguel D. Pedrozo

Undergraduate Distinction Papers

This project is based around the quality control processes used to test ATMs. Currently, a person will manually run through each function of the ATM in order to find modes of failure. As the case with all repetitive jobs, it is an unwanted task and is simple enough to be automated. The new solution I propose allows for a system of devices to operate the functions of the ATM autonomously with little to no human intervention. Additionally, this solution is more reliable when diagnosing a problem as it will eventually communicate with the ATM directly in a closed loop system …


Designing A Robotic Platform For Investigating Swarm Robotics, Jonathan Gray Apr 2019

Designing A Robotic Platform For Investigating Swarm Robotics, Jonathan Gray

Senior Honors Theses

This paper documents the design and subsequent construction of a low-cost, flexible robotic platform for swarm robotics research, and the selection of appropriate swarm algorithms for the implementation of a swarm focused predominantly on target location. The design described herein is intended to allow for the construction of robots large enough to meaningfully interact with their environment while maintaining a low per-robot cost of materials and a low assembly time. The design process is separated into three stages: mechanical design, electrical design, and software design. All major design components are described in detail under the appropriate design section. The BOM …


Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg Apr 2019

Integrating Mathematics And Educational Robotics: Simple Motion Planning, Ronald I. Greenberg, George K. Thiruvathukal, Sara T. Greenberg

George K. Thiruvathukal

This paper shows how students can be guided to integrate elementary mathematical analyses with motion planning for typical educational robots. Rather than using calculus as in comprehensive works on motion planning, we show students can achieve interesting results using just simple linear regression tools and trigonometric analyses. Experiments with one robotics platform show that use of these tools can lead to passable navigation through dead reckoning even if students have limited experience with use of sensors, programming, and mathematics.


2019 Ieee Southeastcon Hardware Competition: A Systems Engineering Approach, Emily Sage Apr 2019

2019 Ieee Southeastcon Hardware Competition: A Systems Engineering Approach, Emily Sage

Mahurin Honors College Capstone Experience/Thesis Projects

The Institute for Electrical and Electronics Engineers (IEEE) Huntsville section invites college students to participate in their annual SoutheastCon Conference. Western Kentucky University sends a team of engineering students to the hardware competition, an opportunity for students to design and build autonomous robots. The 2019 hardware competition called for students to develop a robot that could collect and sort debris by color. This thesis outlines the project lifecycle of the WKU 2019 SoutheastCon robot with an emphasis on implemented systems engineering tools and techniques. Systems Engineering is an interdisciplinary approach to project management that focuses on treating the overall project …