Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Estimation Of Surface Thermal Emissivity In A Vineyard For Uav Microbolometer Thermal Cameras Using Nasa Hytes Hyperspectral Thermal, And Landsat And Aggieair Optical Data, Alfonso F. Torres-Rua, Mahyar Aboutalebi, Timothy Wright, Ayman Nassar, Pierre Guillevic, Lawrence Hipps, Feng Gao, Kevin Jim, Maria Mar Alsina, Calvin Coopmans, Mac Mckee, William Kustas May 2019

Estimation Of Surface Thermal Emissivity In A Vineyard For Uav Microbolometer Thermal Cameras Using Nasa Hytes Hyperspectral Thermal, And Landsat And Aggieair Optical Data, Alfonso F. Torres-Rua, Mahyar Aboutalebi, Timothy Wright, Ayman Nassar, Pierre Guillevic, Lawrence Hipps, Feng Gao, Kevin Jim, Maria Mar Alsina, Calvin Coopmans, Mac Mckee, William Kustas

AggieAir Publications

Microbolometer thermal cameras in UAVs and manned aircraft allow for the acquisition of highresolution temperature data, which, along with optical reflectance, contributes to monitoring and modeling of agricultural and natural environments. Furthermore, these temperature measurements have facilitated the development of advanced models of crop water stress and evapotranspiration in precision agriculture and heat fluxes exchanges in small river streams and corridors. Microbolometer cameras capture thermal information at blackbody or radiometric settings (narrowband emissivity equates to unity). While it is customary that the modeler uses assumed emissivity values (e.g. 0.99– 0.96 for agricultural and environmental settings); some applications (e.g. Vegetation Health …


Application Of Remote Sensing Technology In Water Resources Management, Mahesh Pun May 2019

Application Of Remote Sensing Technology In Water Resources Management, Mahesh Pun

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

The primary goal of this dissertation was to leverage the capabilities of remote sensing technology for capturing detailed spatial information at different spatial resolutions to monitor agricultural crops and generate accurate input datasets for water resources models. This dissertation is divided into three different research studies. In the first study, a remote sensing classification method was developed for classifying irrigated and non-irrigated fields that integrates Vegetation indices with surface energy balance fluxes. The method was applied in the COHYST2010 hydrological model region with wide climate variation and to multiple growing seasons with results that were 92.1% accurate and explained 97% …


New Approach For Temporal Stability Evaluation Of Pseudo-Invariant Calibration Sites (Pics), Fatima Tuz Zafrin Tuli Jan 2019

New Approach For Temporal Stability Evaluation Of Pseudo-Invariant Calibration Sites (Pics), Fatima Tuz Zafrin Tuli

Electronic Theses and Dissertations

Pseudo-Invariant Calibration Sites (PICS) are one of the most popular methods for in-flight vicarious radiometric calibration of Earth remote sensing satellites. The fundamental question of PICS temporal stability has not been adequately addressed. However, the main purpose of this work is to evaluate the temporal stability of a few PICS using a new approach. The analysis was performed over six PICS (Libya 1, Libya 4, Niger 1, Niger 2, Egypt 1 and Sudan 1). The concept of a “Virtual Constellation” was developed to provide greater temporal coverage and also to overcome the dependence limitation of any specific characteristic derived from …