Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

An Analysis Of Energy Consumption And The Use Of Renewables For A Small Drinking Water Treatment Plant, Saria Bukhary, Jacimara Batista, Sajjad Ahmad Dec 2019

An Analysis Of Energy Consumption And The Use Of Renewables For A Small Drinking Water Treatment Plant, Saria Bukhary, Jacimara Batista, Sajjad Ahmad

Civil and Environmental Engineering and Construction Faculty Research

One of the pressing issues currently faced by the water industry is incorporating sustainability considerations into design practice and reducing the carbon emissions of energy-intensive processes. Water treatment, an indispensable step for safeguarding public health, is an energy-intensive process. The purpose of this study was to analyze the energy consumption of an existing drinking water treatment plant (DWTP), then conduct a modeling study for using photovoltaics (PVs) to offset that energy consumption, and thus reduce emissions. The selected plant, located in southwestern United States, treats 0.425 m3 of groundwater per second by utilizing the processes of coagulation, filtration, and disinfection. …


Electrocoagulation As A Pretreatment For Electroxidation Of E. Coli, William Lynn, Joe Heffron, Brooke Mayer Dec 2019

Electrocoagulation As A Pretreatment For Electroxidation Of E. Coli, William Lynn, Joe Heffron, Brooke Mayer

Civil and Environmental Engineering Faculty Research and Publications

Insufficient funding and operator training, logistics of chemical transport, and variable source water quality can pose challenges for small drinking water treatment systems. Portable, robust electrochemical processes may offer a strategy to address these challenges. In this study, electrocoagulation (EC) and electrooxidation (EO) were investigated using two model surface waters and two model groundwaters to determine the efficacy of sequential EC-EO for mitigating Escherichia coli. EO alone (1.67 mA/cm2, 1 min) provided 0.03 to 3.9 logs mitigation in the four model waters. EC alone (10 mA/cm2, 5 min) achieved ≥1 log E. coli mitigation in all …


Iron-Enhanced Mitigation Of Viruses In Drinking Water, Joseph Aiden Heffron Apr 2019

Iron-Enhanced Mitigation Of Viruses In Drinking Water, Joseph Aiden Heffron

Dissertations (1934 -)

Waterborne viruses are ubiquitous in the environment and present a global threat to public health. Previous research has suggested that iron-based water treatment has promise as a low-cost, non-toxic means of virus mitigation. In particular, zero-valent and ferrous iron have shown evidence of inactivating bacteria and viruses. The purpose of this research was to elucidate the relationship between iron oxidation and virus inactivation and determine if iron-based inactivation can enhance two water treatment processes, electrocoagulation and electrooxidation, for virus mitigation. This research first investigated bacteriophage inactivation due to ferrous oxidation in batch tests using ferrous chloride salt. Ferrous iron oxidation …