Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Methodology Of Topology Optimization, Naziha Khandoker Dec 2019

Methodology Of Topology Optimization, Naziha Khandoker

Honors Theses

The need for lighter products is becoming increasingly essential as it cuts material cost and significant amount of weight, which is a key factor in the automotive and aerospace industries. Topology optimization allows us to achieve that by applying the concept to different structures with the goal of optimal distribution of material within finite volume design domain. Its algorithms selectively remove and relocate elements to achieve the optimum performance. This project performs a study on the effect of each design parameter over mechanical performance using Finite Element Analysis and applies it to set of wing attachment brackets. The optimized brackets …


Estimation Of The Fatigue Life Of Additively Manufactured Metallic Components Using Modified Strain Life Parameters Based On Surface Roughness, Peter Grohs Dec 2019

Estimation Of The Fatigue Life Of Additively Manufactured Metallic Components Using Modified Strain Life Parameters Based On Surface Roughness, Peter Grohs

Masters Theses

In this study, a method is developed to estimate the effects of surface roughness on the fatigue life of additively manufactured titanium Ti6Al4V, aluminum 7075–T6, and steel 4340 alloys through modified strain life parameters using finite element analysis (FEA). This method is highly beneficial to the fatigue analysis of as-built additively manufactured metal components, which possess rough surfaces that reduce fatigue life significantly but are challenging to analyze directly using finite element simulation because of complex geometries, i.e., modeling an exact surface profile is arduous.

An effective stress concentration factor, incorporating roughness data, is defined to quantify their effects on …


A Reinforcement Learning Approach To Spacecraft Trajectory Optimization, Daniel S. Kolosa Dec 2019

A Reinforcement Learning Approach To Spacecraft Trajectory Optimization, Daniel S. Kolosa

Dissertations

This dissertation explores a novel method of solving low-thrust spacecraft targeting problems using reinforcement learning. A reinforcement learning algorithm based on Deep Deterministic Policy Gradients was developed to solve low-thrust trajectory optimization problems. The algorithm consists of two neural networks, an actor network and a critic network. The actor approximates a thrust magnitude given the current spacecraft state expressed as a set of orbital elements. The critic network evaluates the action taken by the actor based on the state and action taken. Three different types of trajectory problems were solved, a generalized orbit change maneuver, a semimajor axis change maneuver, …


Thermal Adaptation Of A Vacuum Chamber, Jacob Russell Apr 2019

Thermal Adaptation Of A Vacuum Chamber, Jacob Russell

Honors Theses

The process of adapting a preexisting vacuum chamber to perform thermal vacuum testing is a rare process in the testing industry. A closed vacuum system that was designed without thermal capacitance in mind will hinder the development of additional thermal system capabilities and prove difficult from a cost standpoint. Generally, building a thermal vacuum system from scratch will cost on the order of $10,000 to $100,000 depending on the system requirements regarding control and thermal capacitance within the chamber. This project will explore the cost of such an adaptation, attempting to minimize expense, and potentially provide the “Western Aerospace Launch …


Design Of A Thrust Stand For Electric Propulsion, Hannah Watts Apr 2019

Design Of A Thrust Stand For Electric Propulsion, Hannah Watts

Honors Theses

Thrust stands are the industry standard device for measuring the low levels of thrust generated by electric propulsion devices. Western Michigan University’s Aerospace Laboratory for Plasma Experiments is home to several electric propulsion devices and is in the process of obtaining a pulsed plasma thruster in partnership with the Western Aerospace Launch Initiative. The lab currently has no way of measuring the true thrust force generated by these devices. A thrust stand has been designed specific to the micro-Newton thrust range and the constraints inherent to the facilities in which it will operate.


Control Law Synthesis For Lockheed Martin’S Innovative Control Effectors Aircraft Concept, Cameron James Segard Apr 2019

Control Law Synthesis For Lockheed Martin’S Innovative Control Effectors Aircraft Concept, Cameron James Segard

Masters Theses

This thesis documents a conventional and modern flight control system design process carried out on a tailless aircraft Simulink model with innovative control effectors provided by Lockheed Martin. To set scope and design requirements a performance analysis was carried out to categorize the aircraft. Evaluation of open-loop dynamics reveled modal instabilities as well as state and control coupling. Flight condition dependent pole migration mapping reveled large changes in the aircraft’s static stability. Leading to the development of a four channel proportional-integral- derivative (PID) stability and control augmentation system (SCAS) controlling pitch-rate, roll-rate, side-slip angle, and airspeed states. PID gains are …


Model Predictive Control Synthesis For The Innovative Control Effector Tailless Fighter Aircraft, Christopher Proctor Apr 2019

Model Predictive Control Synthesis For The Innovative Control Effector Tailless Fighter Aircraft, Christopher Proctor

Masters Theses

A nonlinear model predictive control law was developed for the Lockheed Martin Innovative Control Effector tailless fighter aircraft to track way points. In general, aircraft are described by nonlinear dynamics that are dependent on the regime of flight. Additionally strict requirements on state and actuator constraints are common to all aircraft. Tailless aircraft are usually overdetermined systems, meaning solutions to control problems are not unique, and the system is non-affine. The proposed nonlinear control law considers those constraints during run-time, and solves the nonlinear control problem for a range of points within different flight regimes. The control law was developed …