Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

State-Of-Art Functional Biomaterials For Tissue Engineering, Krati Sharma, Mubarak A. Mujawar, Ajeet Kaushik Jul 2019

State-Of-Art Functional Biomaterials For Tissue Engineering, Krati Sharma, Mubarak A. Mujawar, Ajeet Kaushik

Electrical and Computer Engineering Faculty Publications

Nanobiotechnology-enabled tissue engineering strategies have emerged as an innovative and promising technique in the field of regenerative medical science. The design and development of multifunctional smart biomaterials compatible to human physiology is crucial to achieve the required biological function with a reduced negative biological response. Several medical bioimplants have been tested to boost life expectancy and better-quality life. The concept of biocompatibility focuses on body acceptance and no harmful effects after implantation, which require shaping the properties of materials synthesis, surface functionalization, and biofunctionality. Such developed bioactive and biodegradable materials have been utilized to achieve the required function at a …


Adaptive Closed-Loop Neuromorphic Controller For Use In Respiratory Pacing, Ricardo Siu Jul 2019

Adaptive Closed-Loop Neuromorphic Controller For Use In Respiratory Pacing, Ricardo Siu

FIU Electronic Theses and Dissertations

Respiratory pacing can treat ventilatory insufficiency through electrical stimulation of the respiratory muscles, or the respective innervating nerves, to induce ventilation. It avoids some of the adverse effects associated with mechanical ventilation such as risk of diaphragm atrophy and lung damage. However, current respiratory pacing systems provide stimulation in an open-loop manner. This often requires users to undergo frequent tuning sessions with trained clinicians if the specified stimulation parameters are unable to induce sufficient ventilation in the presence of time-varying changes in muscle properties, chest biomechanics, and metabolic demand. Lack of adaptation to these changes may lead to complications arising …


Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury Jul 2019

Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury

FIU Electronic Theses and Dissertations

Wearable biosensing has the tremendous advantage of providing point-of-care diagnosis and convenient therapy. In this research, methods to stabilize the electrochemical sensing response from detection of target biomolecules, Uric Acid (UA) and Xanthine, closely linked to wound healing, have been investigated. Different kinds of materials have been explored to address such detection from a wearable, healing platform. Electrochemical sensing modalities have been implemented in the detection of purine metabolites, UA and Xanthine, in the physiologically relevant ranges of the respective biomarkers. A correlation can be drawn between the concentrations of these bio-analytes and wound severity, thus offering probable quantitative insights …