Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen Nov 2019

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen

Doctoral Dissertations

Predictive simulation based on dynamic optimization using musculoskeletal models is a powerful approach for studying biomechanics of human gait. Predictive simulation can be used for a variety of applications from designing assistive devices to testing theories of motor controls. However, one of the challenges in formulating the predictive dynamic optimization problem is that the cost function, which represents the underlying goal of the walking task (e.g., minimal energy consumption) is generally unknown and is assumed a priori. While different studies used different cost functions, the qualities of the gaits with those cost functions were often not provided. Therefore, this dissertation …


Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier Oct 2019

Bioinspired Complex Nanoarchitectures By Dna Supramolecular Polymerization, Laura A. Lanier

Doctoral Dissertations

Bioinspired nanoarchitectures are of great interest for applications in fields such as nanomedicine, tissue engineering, and biosensing. With this interest, understanding how the physical properties of these complex nanostructures relate to their function is increasingly important. This dissertation describes the creation of complex nanoarchitectures with controlled structure and the investigation of the effect of nanocarrier physical properties on cell uptake for applications in nanomedicine. DNA self-assembly by supramolecular polymerization was chosen to create complex nanostructures of controlled architectures. We demonstrated that the supramolecular polymerization of DNA known as hybridization chain reaction (HCR) is in fact a living polymerization. The living …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


Walking For Object Transport: An Examination Of The Coordinative Adaptations To Locomotor, Perceptual, And Manual Task Constraints, Avelino Amado Jul 2019

Walking For Object Transport: An Examination Of The Coordinative Adaptations To Locomotor, Perceptual, And Manual Task Constraints, Avelino Amado

Doctoral Dissertations

The goal of this dissertation was to understand how the intrinsic dynamics of gait adapt to support the performance of an ecologically relevant object transport task. A common object transport task is walking with a cup of water. Because the water can move relatively independent of the cup, the cup and water system is classified as a complex object. To model this task participants carried a cup with a wooden lid placed on top. On the lid there was a circular region with the same circumference as the cup and a ball. The object of the task was to keep …


Direct Printing/Patterning Of Key Components For Biosensor Devices, Yiliang Zhou Mar 2019

Direct Printing/Patterning Of Key Components For Biosensor Devices, Yiliang Zhou

Doctoral Dissertations

Recently, biosensor devices, especially wearable devices for monitoring human health, have attracted significant interests and meanwhile, they have a huge market. These wearable biosensor devices usually consist of several key components, including microfluidics, biosensing elements and power supply. Though advanced sensing platforms have been extensively explored, high manufacturing fee and lack of practical functions are the main reasons that most of devices and techniques are still out of reach for potential users. This dissertation focuses on fabricating these key components for biosensor devices via advanced printing/patterning techniques, such as inkjet-printing and nanoimprinting. These fabrication techniques can be potentially extended to …


Building The Outer Membrane Protein G (Ompg) Nanopore Library: From The Discrimination Of Biotin-Binding Proteins In Serum To Resolving Human Carbonic Anhydrase From Human Red Blood Cells, Bib Yang Mar 2019

Building The Outer Membrane Protein G (Ompg) Nanopore Library: From The Discrimination Of Biotin-Binding Proteins In Serum To Resolving Human Carbonic Anhydrase From Human Red Blood Cells, Bib Yang

Doctoral Dissertations

The use of pore-forming proteins (PFPs) in nanopore sensing has been fruitful largely due to their nanoscale size and the ease with which protein nanopores can be manipulated and consistently reproduced at a large scale. Nanopore sensing relies heavily on a steady ionic current afforded by rigid nanopores, as the change in current is indicative of analyte detection, revealing characteristics of the analyte such as its relative size, concentration, and charge, as well as the nanopore:analyte interaction. Rigid PFPs have been used in applications such as DNA sequencing, kinetic studies, analyte discrimination, and protein conformation dynamics at the single-molecule level. …