Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Effect Of Acetylation On The Mechanical And Thermal Properties Of Soy Flour Elastomers, Kendra A. Allen, Sarah Cady, David Grewell Sep 2019

Effect Of Acetylation On The Mechanical And Thermal Properties Of Soy Flour Elastomers, Kendra A. Allen, Sarah Cady, David Grewell

Sarah Cady

Biobased fillers were utilized as components in soy-elastomer composites. Soy flour is lightweight, low cost, and high strength, which makes it an ideal alternative to petroleum-derived fillers. However, poor interfacial adhesion and low dispersion within the polymer matrix are limiting factors for composite performance. Soy flour chemically pretreated by acetylation was compounded with synthetic rubber elastomers. In general, soy flour (as received) concentration in the composite is proportional to the ultimate strength. However, soy-elastomer composites with acetylated filler performed similar to the neat elastomer. In addition, the pretreated composite's thermal stability increased and exhibited less phase seperation compared to the …


Polyurethane-Carbon Microfiber Composite Coating For Electrical Heating Of Concrete Pavement Surfaces, Alireza Sassani, Ali Arabzadeh, Halil Ceylan, Sunghwan Kim, Kasthurirangan Gopalakrishnan, Peter C. Taylor, Ali Nahvi Aug 2019

Polyurethane-Carbon Microfiber Composite Coating For Electrical Heating Of Concrete Pavement Surfaces, Alireza Sassani, Ali Arabzadeh, Halil Ceylan, Sunghwan Kim, Kasthurirangan Gopalakrishnan, Peter C. Taylor, Ali Nahvi

Ali Nahvi

Electrically-heated pavements have attracted attention as alternatives to the traditional ice/snow removal practices. Electrically conductive polymer-carbon composite coatings provide promising properties for this application. Based on the concept of joule heating, the conductive composite can be utilized as a resistor that generates heat by electric current and increases the surface temperature to melt the ice and snow on the pavement surface. This research investigates the feasibility of applying an electrically conductive composite coating made with a Polyurethane (PU) binder and micrometer-scale carbon fiber (CMF) filler as the electrical heating materials on the surface of Portland cement concrete (PCC) pavements. PU-CMF …