Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 62

Full-Text Articles in Engineering

An Optimal Allocation And Sizing Strategy Of Distributed Energy Storage Systems To Improve Performance Of Distribution Networks, Choton K. Das, Octavian Bass, Thair S. Mahmoud, Ganesh Kothapalli, Mohammad A. S. Masoum, Navid Mousavi Dec 2019

An Optimal Allocation And Sizing Strategy Of Distributed Energy Storage Systems To Improve Performance Of Distribution Networks, Choton K. Das, Octavian Bass, Thair S. Mahmoud, Ganesh Kothapalli, Mohammad A. S. Masoum, Navid Mousavi

Research outputs 2014 to 2021

The allocation of grid-scale energy storage systems (ESSs) can play a significant role in solving distribution network issues and improving overall network performance. This paper presents a strategy for optimal allocation and sizing of distributed ESSs through P and Q injection by the ESSs to a distribution network. The investigation is carried out in a renewable-penetrated (wind and solar) medium voltage IEEE-33 bus distribution network for two different scenarios: (1) using a uniform ESS size and (2) using non-uniform ESS sizes. DIgSILENT PowerFactory is used for system modeling and testing, and simulation events are automated using Python scripting. A hybrid …


Analysis Of Individual Molecular Dynamics Snapshots Simulating Wetting Of Surfaces Using Spheroidal Geometric Constructions, Aleksandr Abramov, Stefan Iglauer Aug 2019

Analysis Of Individual Molecular Dynamics Snapshots Simulating Wetting Of Surfaces Using Spheroidal Geometric Constructions, Aleksandr Abramov, Stefan Iglauer

Research outputs 2014 to 2021

Accurate characterization of wettability of minerals is important for efficient oil recovery and carbon geosequestration. In studies where molecular dynamics simulations are used to compute the contact angle, emphasis is often placed on results or theoretical details of the simulations themselves, overlooking potentially applicable methodologies for determination of the contact angle. In this manuscript, a concept of a method utilizing spheroidal geometric constructions to estimate the contact angle of a water droplet on a silica surface in carbon dioxide atmosphere is outlined and applied to the final snapshots of two molecular dynamics simulation runs. Two carbon dioxide pressures and two …


Failure Modes And Tensile Strength Of Screw Anchors In Non-Cracked Concrete, Alireza Mohyeddin, Emad F. Gad, Jessey Lee Jun 2019

Failure Modes And Tensile Strength Of Screw Anchors In Non-Cracked Concrete, Alireza Mohyeddin, Emad F. Gad, Jessey Lee

Research outputs 2014 to 2021

Screw anchors are widely used in applications such as fastening base plates in steel and metal construction, formwork and bracing, structural steel applications, railings and handrails. At present, researchers and design engineers rely on the Concrete Capacity Design (CCD) method to predict the strength of screw anchors under the tensile loading as the only method available in literature. In CCD method, the underlying assumption is that the concrete cone and combined concrete cone and pull-out failure modes are the main failure mode for anchors, whereas, previous studies have demonstrated that pull-out is also a very common failure mode of screw …


An Integrated Model To Use Drilling Modular Machine Tools, Ana Vafadar, Majid Tolouei-Rad, Kevin Hayward Jun 2019

An Integrated Model To Use Drilling Modular Machine Tools, Ana Vafadar, Majid Tolouei-Rad, Kevin Hayward

Research outputs 2014 to 2021

Modular machine tools provide a platform for drilling-related operations within automotive companies. The use of these machine tools is widespread; however, manufacturers wishing to use this technology frequently face the challenge of selecting the most appropriate manufacturing system. Accordingly, a comprehensive feasibility analysis procedure is required to assist decision-makers before any investment is made on the preparation of detailed machine design or purchase one. This paper presents a model, which collects the previous works of the authors. To do this, an integrated framework for decision-making of using machine tools is developed. The aim of this model is to enable users …


Pt Nanoparticles Decorated Heterostructured G-C3n4/Bi2moo6 Microplates With Highly Enhanced Photocatalytic Activities Under Visible Light, Z. Jia, F. Lyu, Laichang Zhang, S. Zeng, Shunxing Liang, Y. Y. Li, J. Lu May 2019

Pt Nanoparticles Decorated Heterostructured G-C3n4/Bi2moo6 Microplates With Highly Enhanced Photocatalytic Activities Under Visible Light, Z. Jia, F. Lyu, Laichang Zhang, S. Zeng, Shunxing Liang, Y. Y. Li, J. Lu

Research outputs 2014 to 2021

Exploring an efficient and photostable heterostructured photocatalyst is a pivotal scientific topic for worldwide energy and environmental concerns. Herein, we reported that Pt decorated g-C3N4/Bi2MoO6 heterostructured composites with enhanced photocatalytic performance under visible light were simply synthesized by one-step hydrothermal method for methylene blue (MB) dye degradation. Results revealed that the synthetic Pt decorated g-C3N4/Bi2MoO6 composites with Bi2MoO6 contents of 20 wt.% (Pt@CN/20%BMO) presented the highest photocatalytic activity, exhibiting 7 and 18 times higher reactivity than the pure g-C3N4 and …


Low-Cost Carbon Fibre Derived From Sustainable Coal Tar Pitch And Polyacrylonitrile: Fabrication And Characterisation, Omid Zabihi, Sajjad Shafei, Seyed Mousa Fakhrhoseini, Mojtaba Ahmadi, Hossein Ajdari Nazarloo, Rohan Stanger, Quang Anh Tran, John Lucas, Terry Wall, Minoo Naebe Apr 2019

Low-Cost Carbon Fibre Derived From Sustainable Coal Tar Pitch And Polyacrylonitrile: Fabrication And Characterisation, Omid Zabihi, Sajjad Shafei, Seyed Mousa Fakhrhoseini, Mojtaba Ahmadi, Hossein Ajdari Nazarloo, Rohan Stanger, Quang Anh Tran, John Lucas, Terry Wall, Minoo Naebe

Research outputs 2014 to 2021

Preparation of high-value pitch-based carbon fibres (CFs) from mesophase pitch precursor is of great importance towards low-cost CFs. Herein, we developed a method to reduce the cost of CFs precursor through incorporating high loading of coal tar pitch (CTP) into polyacrylonitrile (PAN) polymer solution. The CTP with a loading of 25% and 50% was blended with PAN and their spinnability was examined by electrospinning process. The effect of CTP on thermal stabilization and carbonisation of PAN fibres was investigated by thermal analyses methods. Moreover, electrospun PAN/CTP fibres were carbonised at two different temperatures i.e., 850 °C and 1200 °C and …


A Review Of The Enhancement Of Bio-Hydrogen Generation By Chemicals Addition, Yong Sun, Jun He, Gang Yang, Guangzhi Sun, Valérie Sage Apr 2019

A Review Of The Enhancement Of Bio-Hydrogen Generation By Chemicals Addition, Yong Sun, Jun He, Gang Yang, Guangzhi Sun, Valérie Sage

Research outputs 2014 to 2021

Bio-hydrogen production (BHP) produced from renewable bio-resources is an attractive route for green energy production, due to its compelling advantages of relative high efficiency, cost-effectiveness, and lower ecological impact. This study reviewed different BHP pathways, and the most important enzymes involved in these pathways, to identify technological gaps and effective approaches for process intensification in industrial applications. Among the various approaches reviewed in this study, a particular focus was set on the latest methods of chemicals/metal addition for improving hydrogen generation during dark fermentation (DF) processes; the up-to-date findings of different chemicals/metal addition methods have been quantitatively evaluated and thoroughly …


The Effect Of Fine And Coarse Recycled Aggregates On Fresh And Mechanical Properties Of Self-Compacting Concrete, Mahmoud Nili, Hossein Sasanipour, Farhad Aslani Apr 2019

The Effect Of Fine And Coarse Recycled Aggregates On Fresh And Mechanical Properties Of Self-Compacting Concrete, Mahmoud Nili, Hossein Sasanipour, Farhad Aslani

Research outputs 2014 to 2021

Today, the use of recycled aggregates as a substitute for a part of the natural aggregates in concrete production is increasing. This approach is essential because the resources for natural aggregates are decreasing in the world. In the present study, the effects of recycled concrete aggregates as a partial replacement for fine (by 50%) and coarse aggregates (by 100%) were examined in the self-compacting concrete mixtures which contain air-entraining agents and silica fumes. Two series of self-compacting concrete mixes have been prepared. In the first series, fine and coarse recycled mixtures respectively with 50% and 100% replacement with air entraining …


Application Of The Clayff And The Dreiding Force Fields For Modeling Of Alkylated Quartz Surfaces, Aleksandr Abramov, Stefan Iglauer Apr 2019

Application Of The Clayff And The Dreiding Force Fields For Modeling Of Alkylated Quartz Surfaces, Aleksandr Abramov, Stefan Iglauer

Research outputs 2014 to 2021

To extend applicability and to overcome limitations of combining rules for nonbond potential parameters, in this study, CLAYFF and DREIDING force fields are coupled at the level of atomic site charges to model quartz surfaces with chemisorpt hydrocarbons. Density functional theory and Bader charge analysis are applied to calculate charges of atoms of the OC bond connecting a quartz crystal and an alkyl group. The study demonstrates that the hydrogen atom of the quartz surface hydroxyl group can be removed and its charge can be redistributed among the oxygen and carbon atoms of the OC bond in a manner consistent …


Development Of Heavyweight Self-Compacting Concrete And Ambient-Cured Heavyweight Geopolymer Concrete Using Magnetite Aggregates, Afsaneh Valizadeh, Farhad Aslani, Zohaib Asif, Matt Roso Mar 2019

Development Of Heavyweight Self-Compacting Concrete And Ambient-Cured Heavyweight Geopolymer Concrete Using Magnetite Aggregates, Afsaneh Valizadeh, Farhad Aslani, Zohaib Asif, Matt Roso

Research outputs 2014 to 2021

Heavyweight self-compacting concrete (HWSCC) and heavyweight geopolymer concrete (HWGC) are new types of concrete that integrate the advantages of heavyweight concrete (HWC) with self-compacting concrete (SCC) and geopolymer concrete (GC), respectively. The replacement of natural coarse aggregates with magnetite aggregates in control SCC and control GC at volume ratios of 50%, 75%, and 100% was considered in this study to obtain heavyweight concrete classifications, according to British standards, which provide proper protection from sources that emit harmful radiations in medical and nuclear industries and may also be used in many offshore structures. The main aim of this study is to …


Wettability Of Fully Hydroxylated And Alkylated (001) Α-Quartz Surface In Carbon Dioxide Atmosphere, Aleksandr Abramov, Alireza Keshavarz, Stefan Iglauer Mar 2019

Wettability Of Fully Hydroxylated And Alkylated (001) Α-Quartz Surface In Carbon Dioxide Atmosphere, Aleksandr Abramov, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

Wettability of alkylated quartz surfaces is of primary importance in several technological applications, including the development of oil and gas reservoirs and carbon geo-sequestration. It is intuitively understood and experimentally confirmed that hydroxylated quartz surfaces are hydrophilic. By gradually saturating a hydroxylated (001) α-quartz surface with pentyl groups, we show using molecular dynamics simulations that the surface can also exhibit extreme hydrophobicity. Within a range of surface pentyl group density from 0.29 to 3.18/nm2, the contact angle of a water droplet under 10 MPa pressure of carbon dioxide at 300 K changes from 10–20 to 180°. This study …


Immobilization Of Magnetite Nanoparticles For The Removal Of Arsenic And Antimony From Contaminated Water, Guangzhi Sun, Mehdi H. Khiadani Jan 2019

Immobilization Of Magnetite Nanoparticles For The Removal Of Arsenic And Antimony From Contaminated Water, Guangzhi Sun, Mehdi H. Khiadani

Research outputs 2014 to 2021

Magnetite (Fe3 O4) nanoparticles were synthesized and immobilized in a synthetic resin poly-methyl methacrylate (PMMA). The Fe3 O4 nanoparticle-PMMA composites were studied for their efficiencies of removing dissolved arsenic (As) and antimony (Sb). The effects of major environmental and operating parameters on the removal of As and Sb were investigated in batch experiments. Singular and competitive adsorption of As and Sb onto the composites were studied. The results demonstrated the capability of the Fe3 O4-PMMA composites for removing dissolved metalloids.


Real-Time Classification Of Multivariate Olfaction Data Using Spiking Neural Networks, Arnup Vanarse, Adam Osseiran, Alexander Rassau, Therese O'Sullivan, Jonny Lo, Amanda Devine Jan 2019

Real-Time Classification Of Multivariate Olfaction Data Using Spiking Neural Networks, Arnup Vanarse, Adam Osseiran, Alexander Rassau, Therese O'Sullivan, Jonny Lo, Amanda Devine

Research outputs 2014 to 2021

Recent studies in bioinspired artificial olfaction, especially those detailing the application of spike-based neuromorphic methods, have led to promising developments towards overcoming the limitations of traditional approaches, such as complexity in handling multivariate data, computational and power requirements, poor accuracy, and substantial delay for processing and classification of odors. Rank-order-based olfactory systems provide an interesting approach for detection of target gases by encoding multi-variate data generated by artificial olfactory systems into temporal signatures. However, the utilization of traditional pattern-matching methods and unpredictable shuffling of spikes in the rank-order impedes the performance of the system. In this paper, we present an …


Performance Analysis Of A Thermal-Driven Tubular Direct Contact Membrane Distillation System, Abdellah Sharifian, Mehdi Khiadani, Ataollah Nosrati Jan 2019

Performance Analysis Of A Thermal-Driven Tubular Direct Contact Membrane Distillation System, Abdellah Sharifian, Mehdi Khiadani, Ataollah Nosrati

Research outputs 2014 to 2021

This paper examines the performance of a thermal-driven tubular direct contact membrane distillation (DCMD) system theoretically and experimentally. A multi-step mathematical model was developed to predict the freshwater productivity of the tubular DCMD module applicable for both small and large-scale applications by considering the changes in the operational variables along the membrane’s length. The proposed model was verified by building an experimental rig which was tested under different operational conditions. The results showed that keeping the mass flow rates in the hot and cold channels either near the end or beyond the transition range of the flows results in higher …


Optimization Of Well Pad Design And Drilling - Well Clustering, Aleksandr Abramov Jan 2019

Optimization Of Well Pad Design And Drilling - Well Clustering, Aleksandr Abramov

Research outputs 2014 to 2021

A model accounting for more than 30 parameters of drilling projects, and a computer program to enumerate groupings of the wells of a pad with consequent calculations of technical-economic characteristics, are developed and tested. Seven drilling scenarios for a 24-well pad with different starting oil flow rates for the wells are studied. Optimal well groupings in terms of Net Present Value (NPV) for three discount rates and five oil production decline rates have been found. The results show that: NPV-maximizing well pad designs with unequal (varying) numbers of wells in groups (clusters) may require only slight alterations …


Fire Performance Of Heavyweight Self-Compacting Concrete And Heavyweight High Strength Concrete, Farhad Aslani, Fatemeh Hamidi, Qilong Ma Jan 2019

Fire Performance Of Heavyweight Self-Compacting Concrete And Heavyweight High Strength Concrete, Farhad Aslani, Fatemeh Hamidi, Qilong Ma

Research outputs 2014 to 2021

In this study, the fresh and hardened state properties of heavyweight self-compacting concrete (HWSCC) and heavyweight high strength concrete (HWHSC) containing heavyweight magnetite aggregate with 50, 75, and 100% replacement ratio, and their performance at elevated temperatures were explored experimentally. For fresh-state properties, the flowability and passing ability of HWSCCs were assessed by using slump flow, T500 mm, and J-ring tests. Hardened-state properties including hardened density, compressive strength, and modulus of elasticity were evaluated after 28 days of mixing. High-temperature tests were also performed to study the mass loss, spalling of HWSCC and HWHSC, and residual mechanical properties at 100, …


Natural Source Zone Depletion Of Lnapl: A Critical Review Supporting Modelling Approaches, Kaveh Sookhak Lari, Greg B. Davis, John L. Rayner, Trevor P. Bastow, Geoffrey J. Puzon Jan 2019

Natural Source Zone Depletion Of Lnapl: A Critical Review Supporting Modelling Approaches, Kaveh Sookhak Lari, Greg B. Davis, John L. Rayner, Trevor P. Bastow, Geoffrey J. Puzon

Research outputs 2014 to 2021

Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) includes partitioning, transport and degradation of LNAPL components. NSZD is being considered as a site closure option during later stages of active remediation of LNAPL contaminated sites, and where LNAPL mass removal is limiting. To ensure NSZD meets compliance criteria and to design enhanced NSZD actions if required, residual risks posed by LNAPL and its long term behaviour require estimation. Prediction of long-term NSZD trends requires linking physicochemical partitioning and transport processes with bioprocesses at multiple scales within a modelling framework. Here we expand and build on the knowledge …


Modelling Of The Radiant Heat Flux And Rate Of Spread Of Wildfire Within The Urban Environment, Greg Penney, Steven Richardson Jan 2019

Modelling Of The Radiant Heat Flux And Rate Of Spread Of Wildfire Within The Urban Environment, Greg Penney, Steven Richardson

Research outputs 2014 to 2021

One approach to increase community resilience to wildfire impacts is the enhancement of residential construction standards in an effort to provide protective shelters for families within their own homes. Current wildfire models reviewed in this study assume fire growth is unrestricted by vegetation fuel bed geometry; the head fire has attained a quasi-steady rate of spread; and the shielding effects of urban development are ignored. As a result, radiant heat flux may be significantly overestimated for small vegetation fires in road reserves, urban parklands, and similar scenarios. This paper proposes two new models to address this issue, and utilises two …


Co 2 -Wettability Of Sandstones Exposed To Traces Of Organic Acids: Implications For Co 2 Geo-Storage, Muhammad Ali, Muhammad Arif, Muhammad Faraz Sahito, Sarmad Al-Anssari, Alireza Keshavarz, Ahmed Barifcani, Linda Stalker, Mohammad Sarmadivaleh, Stefan Iglauer Jan 2019

Co 2 -Wettability Of Sandstones Exposed To Traces Of Organic Acids: Implications For Co 2 Geo-Storage, Muhammad Ali, Muhammad Arif, Muhammad Faraz Sahito, Sarmad Al-Anssari, Alireza Keshavarz, Ahmed Barifcani, Linda Stalker, Mohammad Sarmadivaleh, Stefan Iglauer

Research outputs 2014 to 2021

Wettability of CO 2 -brine-mineral systems plays a vital role during geological CO 2 -storage. Residual trapping is lower in deep saline aquifers where the CO 2 is migrating through quartz rich reservoirs but CO 2 accumulation within a three-way structural closure would have a high storage volume due to higher CO 2 saturation in hydrophobic quartz rich reservoir rock. However, such wettability is only poorly understood at realistic subsurface conditions, which are anoxic or reducing. As a consequence of the reducing environment, the geological formations (i.e. deep saline aquifers) contain appreciable concentrations of various organic acids. We thus demonstrate …


Optimal Allocation Of Distributed Energy Storage Systems To Improve Performance And Power Quality Of Distribution Networks, Choton K. Das, Octavian Bass, Thair S. Mahmoud, Ganesh Kothapalli, Navid Mousavi, Daryoush Habibi, Mohammad A.S. Masoum Jan 2019

Optimal Allocation Of Distributed Energy Storage Systems To Improve Performance And Power Quality Of Distribution Networks, Choton K. Das, Octavian Bass, Thair S. Mahmoud, Ganesh Kothapalli, Navid Mousavi, Daryoush Habibi, Mohammad A.S. Masoum

Research outputs 2014 to 2021

The placement of grid-scale energy storage systems (ESSs) can have a significant impact on the level of performance improvements of distribution networks. This paper proposes a strategy for optimal allocation of distributed ESSs in distribution networks to simultaneously minimize voltage deviation, flickers, power losses, and line loading. The optimal ESS allocation is investigated through the PQ injection (considering a variable power factor on the dispatch of ESSs) and the results are compared in terms of performance and power quality improvements. An IEEE-33 bus distribution system (medium voltage), having a high influence of renewable (wind and solar) distributed generation, is used …


Economic And Productivity Evaluation Of Different Horizontal Drilling Scenarios: Middle East Oil Fields As Case Study, Abbas Khaksar Manshad, Milad Ebrahimi Dastgerdi, Jagar A. Ali, Nazir Mafakheri, Alireza Keshavarz, Stefan Iglauer, Amir H. Mohammadi Jan 2019

Economic And Productivity Evaluation Of Different Horizontal Drilling Scenarios: Middle East Oil Fields As Case Study, Abbas Khaksar Manshad, Milad Ebrahimi Dastgerdi, Jagar A. Ali, Nazir Mafakheri, Alireza Keshavarz, Stefan Iglauer, Amir H. Mohammadi

Research outputs 2014 to 2021

Development of high-density oil and gas fields presents a great challenge to the energy industry due to the low productivity of individual wells and their high drilling cost. We thus compared the productivity, associated costs and economical revenues gained from two field development scenarios, with multilateral and horizontal drilling, to evaluate the optimal drilling and completion conditions in a giant heavy oil reservoir in the Middle East. Well path design was identified as one of the most complex parameters depending on the well-testing results, field production and reservoir simulation data. The fishbone well of four branches with a length of …


Investigating The Effect Of [C8py][Cl] And [C18py][Cl] Ionic Liquids On The Water/Oil Interfacial Tension By Considering Taguchi Method, Siamak Najimi, Iman Nowrouzi, Abbas Khaksar Manshad, Mehdi Hojjat Farsangi, Ali Zeinolabedini Hezave, Jagar A. Ali, Alireza Keshavarz, Amir H. Mohammadi Jan 2019

Investigating The Effect Of [C8py][Cl] And [C18py][Cl] Ionic Liquids On The Water/Oil Interfacial Tension By Considering Taguchi Method, Siamak Najimi, Iman Nowrouzi, Abbas Khaksar Manshad, Mehdi Hojjat Farsangi, Ali Zeinolabedini Hezave, Jagar A. Ali, Alireza Keshavarz, Amir H. Mohammadi

Research outputs 2014 to 2021

Capillary and interfacial forces are of great influences of trapping hydrocarbon in porous media after primary and secondary recovery processes. The trapped crude oil in the reservoir can be mobilized and produced by reducing these forces. Thus, surfactant flooding, as a main enhanced oil recovery (EOR) method, is usually applied to reduce the interfacial tension (IFT) of crude oil–water system in porous medium and improves the oil recovery. This study focused on the effect of [C8Py][Cl] and [C18Py][Cl] ionic liquids (ILs), as a new family of surfactant, in combination with various salts including sodium chloride, potassium chloride, magnesium sulfate and …


Residual Trapping Of Co2 In An Oil-Filled, Oil-Wet Sandstone Core: Results Of Three-Phase Pore-Scale Imaging, Stefan Iglauer, Adriana Paluszny, Taufiq Rahman, Yihuai Zhang, Wolfgang Wülling, Maxim Lebedev Jan 2019

Residual Trapping Of Co2 In An Oil-Filled, Oil-Wet Sandstone Core: Results Of Three-Phase Pore-Scale Imaging, Stefan Iglauer, Adriana Paluszny, Taufiq Rahman, Yihuai Zhang, Wolfgang Wülling, Maxim Lebedev

Research outputs 2014 to 2021

CO2 geosequestration in oil reservoirs is an economically attractive solution as it can be combined with enhanced oil recovery (CO2-EOR). However, the effectiveness of the associated three-phase displacement processes has not been tested at the micrometer pore scale, which determines the overall reservoir-scale fluid dynamics and thus CO2-EOR project success. We thus imaged such displacement processes in situ in 3-D with X-ray microcomputed tomography at high resolution at reservoir conditions and found that oil extraction was enhanced substantially, while a significant residual CO2 saturation (13.5%) could be achieved in oil-wet rock. Statistics of the residual CO2 and oil clusters are …


Effect Of Si And C Additions On The Reaction Mechanism And Mechanical Properties Of Fecrnicu High Entropy Alloy, Hao Wu, Sirui Huang, Huan Qiu, Heguo Zhu, Zonghan Xie Jan 2019

Effect Of Si And C Additions On The Reaction Mechanism And Mechanical Properties Of Fecrnicu High Entropy Alloy, Hao Wu, Sirui Huang, Huan Qiu, Heguo Zhu, Zonghan Xie

Research outputs 2014 to 2021

FeCrNiCu based high entropy alloy matrix composites were fabricated with addition of Si and C by vacuum electromagnetic induction melting. The primary goal of this research was to analyze the reaction mechanism, microstructure, mechanical properties at room temperature and strengthening mechanism of the composites with addition of Si and C. The reaction mechanism of powders containing (Si, Ni and C) was analyzed, only one reaction occurred (i.e., Si + C → SiC) and its activation energy is 1302.8 kJ/mol. The new composites consist of a face centered cubic (FCC) structured matrix reinforced by submicron sized SiC particles. The addition of …


Application-Specific Oxide-Based And Metal-Dielectric Thin-Film Materials Prepared By Radio Frequency Magnetron Sputtering, Mohammad Nur-E-Alam, Wade Lonsdale, Mikhail Vasiliev, Kamal Alameh Jan 2019

Application-Specific Oxide-Based And Metal-Dielectric Thin-Film Materials Prepared By Radio Frequency Magnetron Sputtering, Mohammad Nur-E-Alam, Wade Lonsdale, Mikhail Vasiliev, Kamal Alameh

Research outputs 2014 to 2021

We report on the development of several different thin-film functional material systems prepared by radio frequency (RF) magnetron sputtering at Edith Cowan University nanofabrication labs. While focusing on the RF sputtering process optimizations for new or the previously underexplored material compositions and multilayer structures, we disclose several unforeseen material properties and behaviours. Among these are an unconventional magnetic hysteresis loop with an intermediate saturation state observed in garnet trilayers, and an ultrasensitive magnetic switching behaviour in garnet-oxide composites (GOC). We also report on the unusually high thermal exposure stability observed in some nanoengineered metal-dielectric multilayers. We communicate research results related …


Particle Size-Dependent Microstructure, Hardness And Electrochemical Corrosion Behavior Of Atmospheric Plasma Sprayed Nicrbsi Coatings, Peng Sang, Liang-Yu Chen, Cuihua Zhao, Ze-Xin Wang, Haiyang Wang, Sheng Lu, Dongpo Song, Jia-Huan Xu, Lai-Chang Zhang Jan 2019

Particle Size-Dependent Microstructure, Hardness And Electrochemical Corrosion Behavior Of Atmospheric Plasma Sprayed Nicrbsi Coatings, Peng Sang, Liang-Yu Chen, Cuihua Zhao, Ze-Xin Wang, Haiyang Wang, Sheng Lu, Dongpo Song, Jia-Huan Xu, Lai-Chang Zhang

Research outputs 2014 to 2021

Particle size is a critical consideration for many powder coating-related industries since it significantly influences the properties of the produced materials. However, the effect of particle size on the characteristics of plasma sprayed NiCrBSi coatings is not well understood. This work investigates the microstructures, hardness and electrochemical corrosion behavior of plasma sprayed NiCrBSi coatings synthesized using different-sized powders. All coatings mainly consist of Ni, N3B, CrB, Cr7C3 and Cr3C2 phases. The coatings produced by small particles (50–75 μm) exhibit lower porosity (2.0 ± 0.8%). Such coatings show a higher fraction (15.5 vol.%) of the amorphous phase and lower hardness (700 …


Local Instabilities During Capillary-Dominated Immiscible Displacement In Porous Media, Yang Liu, Stefan Iglauer, Jianchao Cai, Mohammad A. Amooie, Chaozhong Qin Jan 2019

Local Instabilities During Capillary-Dominated Immiscible Displacement In Porous Media, Yang Liu, Stefan Iglauer, Jianchao Cai, Mohammad A. Amooie, Chaozhong Qin

Research outputs 2014 to 2021

Fully understanding the mechanism of pore-scale immiscible displacement dominated by capillary forces, especially local instabilities and their influence on flow patterns, is essential for various industrial and environmental applications such as enhanced oil recovery, CO2 geo-sequestration and remediation of contaminated aquifers. It is well known that such immiscible displacement is extremely sensitive to the fluid properties and pore structure, especially the wetting properties of the porous medium which affect not only local interfacial instabilities at the micro-scale, but also displacement patterns at the macro-scale. In this review, local interfacial instabilities under three typical wetting conditions, namely Haines jump events during …


Properties Of Ambient-Cured Normal And Heavyweight Geopolymer Concrete Exposed To High Temperatures, Farhad Aslani, Zohaib Asif Jan 2019

Properties Of Ambient-Cured Normal And Heavyweight Geopolymer Concrete Exposed To High Temperatures, Farhad Aslani, Zohaib Asif

Research outputs 2014 to 2021

Ambient-cured heavyweight geopolymer concrete (HWGC) is a new type of concrete that combines the benefits of both heavyweight concrete (HWC) and geopolymer concrete (GC). HWGC provides proper protection from the sources that emit harmful radiations in medical and nuclear industries. Furthermore, HWGC may also be used in offshore structures for pipeline ballasting and similar underwater structures. In this study, heavyweight aggregates (magnetite) have been used and replaced by normal-weight coarse aggregates in GC at volume ratios of 50, 75, and 100% to attain heavyweight classification according to British standards. This study investigates the impacts of high temperatures on standard ambient-cured …


A Novel Solar-Driven Direct Contact Membrane-Based Water Desalination System, Abdellah Sharifian, Mehdi Khiadani Jan 2019

A Novel Solar-Driven Direct Contact Membrane-Based Water Desalination System, Abdellah Sharifian, Mehdi Khiadani

Research outputs 2014 to 2021

This study proposes a novel integrated solar membrane-based desalination system. The system includes vacuum glass tubes to increase absorbed solar energy and to decrease heat loss, heat pipes to transfer the absorbed energy efficiently, and a tubular direct contact membrane distillation module to use the absorbed energy more effectively. To improve the freshwater production rate and overall efficiency of the proposed system, a cooling unit was also added to the permeate loop of the desalination unit. The performance of the system was experimentally investigated without (Case I) and with (Case II) the cooling unit in summer and without the cooling …


Theoretical Modelling Approaches Of Heat Pipe Solar Collectors In Solar Systems: A Comprehensive Review, Abdellah Sharifian, Mehdi Khiadani, Ataollah Nosrati Jan 2019

Theoretical Modelling Approaches Of Heat Pipe Solar Collectors In Solar Systems: A Comprehensive Review, Abdellah Sharifian, Mehdi Khiadani, Ataollah Nosrati

Research outputs 2014 to 2021

The invention of heat pipe solar collectors (HPSCs) is considered as an immense step forward towards solving the challenges of conventional solar thermal systems. Their unique qualities have acted as a great motivation for researchers to focus their studies on HPSCs and their applications. A considerable share of these studies has been allocated to theoretical studies due to several technical and economic reasons. However, to the authors’ knowledge and despite many valuable efforts in this field, there is no review paper available to summarise the relevant proposed and developed theoretical models to date and identifies the research gaps in this …