Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka Dec 2019

Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka

MSU Graduate Theses

We present a computational study of amorphous boron carbide (a-BxC) models using Molecular Dynamics (MD) studied with Stillinger-Weber (SW) and ReaxFF potential. The atomic structure factor (S(Q)), radial distribution function (RDF) and bond lengths comparison with other experimental and ab initio models shows that a random arrangement of icosahedra (B12, B11C) interconnected by chains (CCC, CBC) are present in a-BxC. Afterward, Hybrid Reverse Monte Carlo (HRMC) technique is used to recreate a-BxC structures. The existing SW potential parameters of Boron are optimized for the α-rhombohedral (Icosahedral B12 …


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Department of Chemistry: Dissertations, Theses, and Student Research

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get …


Tools For Understanding Static Structure Factors And Their Application To Simulations Of Liquids, Travis Mackoy Jan 2019

Tools For Understanding Static Structure Factors And Their Application To Simulations Of Liquids, Travis Mackoy

Graduate Research Theses & Dissertations

Molecular dynamics (MD) simulations can be used to compute static structure factors (��(��)) and provide an interpretation of the underlying periodic atomic ordering. MD simulations complement experimentally measured ��(��) by allowing qualitative assignment of peaks to various ordering, such as cation-anion ordering in ionic liquids, via decomposition of ��(��) into partial ��(��). Here we present a method for classifying interatomic distances that allows for quantitative peak assignment and visualization of atoms that contribute most to each peak in calculated ��(��) for soft materials. The method is illustrated by investigating ��(��) for the ionic liquid 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide (C4C1pyrrTFSI), which shows two …