Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Recent Progress In Copper-Based Catalysts For Electrochemical Co2 Reduction, Wen Lei, Wei-Ping Xiao, De-Li Wang Aug 2019

Recent Progress In Copper-Based Catalysts For Electrochemical Co2 Reduction, Wen Lei, Wei-Ping Xiao, De-Li Wang

Journal of Electrochemistry

As the situation of energy crisis and environmental pollution become more and more serious, the electrochemical reduction of carbon dioxide (CO2) has attracted lots of attention because of its multiple meanings such as environment, resources and economic benefits. In this paper, the state of the art electrochemical reduction of CO2 in aqueous solution is reviewed, and the latest research progress in Cu-based catalysts with different structures and morphologies is summarized. In the end, the application prospects, opportunities and challenges of Cu-based materials are briefly presented to provide an outlook for future research directions.


Statuses, Challenges And Strategies In The Development Of Low-Temperature Carbon Dioxide Electroreduction Technology, Xu-Rui Zhang, Xiao-Lin Shao, Jin Yi, Yu-Yu Liu, Jiu-Jun Zhang Aug 2019

Statuses, Challenges And Strategies In The Development Of Low-Temperature Carbon Dioxide Electroreduction Technology, Xu-Rui Zhang, Xiao-Lin Shao, Jin Yi, Yu-Yu Liu, Jiu-Jun Zhang

Journal of Electrochemistry

Low-temperature carbon dioxide (CO2) electrochemical reduction technology is a hotspot for research and development in recent years as a way to reduce the negative impact of CO2 on the environment and to generate energy storage through converting electricity to low-carbon fuels. Although basic research on catalyst activity, product selectivity, and reaction mechanism has been widely reported, the design and practicality of catalytic stability and corresponding electrochemical reactor systems have not been given sufficient attention and systematic development. In this paper, two important factors affecting the development of CO2 electrochemical reduction technology in low temperature aqueous solution …


Thermal Removal Of Carbon Dioxide From The Atmosphere: Energy Requirements And Scaling Issues, Ted Von Hippel Aug 2019

Thermal Removal Of Carbon Dioxide From The Atmosphere: Energy Requirements And Scaling Issues, Ted Von Hippel

Ted von Hippel

I conduct a systems-level study of direct air capture of CO2 using techniques from thermal physics. This system relies on a combination of an efficient heat exchanger, radiative cooling, and refrigeration, all at industrial scale and operated in environments at low ambient temperatures. While technological developments will be required for such a system to operate efficiently, those developments rest on a long history of refrigeration expertise and technology, and they can be developed and tested at modest scale. I estimate that the energy required to remove CO2 via this approach is comparable to direct air capture by other techniques. The …


Analysis Of Individual Molecular Dynamics Snapshots Simulating Wetting Of Surfaces Using Spheroidal Geometric Constructions, Aleksandr Abramov, Stefan Iglauer Aug 2019

Analysis Of Individual Molecular Dynamics Snapshots Simulating Wetting Of Surfaces Using Spheroidal Geometric Constructions, Aleksandr Abramov, Stefan Iglauer

Research outputs 2014 to 2021

Accurate characterization of wettability of minerals is important for efficient oil recovery and carbon geosequestration. In studies where molecular dynamics simulations are used to compute the contact angle, emphasis is often placed on results or theoretical details of the simulations themselves, overlooking potentially applicable methodologies for determination of the contact angle. In this manuscript, a concept of a method utilizing spheroidal geometric constructions to estimate the contact angle of a water droplet on a silica surface in carbon dioxide atmosphere is outlined and applied to the final snapshots of two molecular dynamics simulation runs. Two carbon dioxide pressures and two …


Beneficial Reuse Of Industrial Co2 Emissions Using A Microalgae Photobioreactor: Waste Heat Utilization Assessment, Daniel T. Mohler, Michael H. Wilson, Zhen Fan, John G. Groppo, Mark Crocker Jul 2019

Beneficial Reuse Of Industrial Co2 Emissions Using A Microalgae Photobioreactor: Waste Heat Utilization Assessment, Daniel T. Mohler, Michael H. Wilson, Zhen Fan, John G. Groppo, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

Microalgae are a potential means of recycling CO2 from industrial point sources. With this in mind, a novel photobioreactor (PBR) was designed and deployed at a coal-fired power plant. To ascertain the feasibility of using waste heat from the power plant to heat algae cultures during cold periods, two heat transfer models were constructed to quantify PBR cooling times. The first, which was based on tabulated data, material properties and the physical orientation of the PBR tubes, yielded a range of heat transfer coefficients of 19–64 W m−2 K−1 for the PBR at wind speeds of 1–10 …


Ecological Co2 Flux Of A Green Roof Ecosystem And A Typical Grassland Ecosystem, Madeline Oxner May 2019

Ecological Co2 Flux Of A Green Roof Ecosystem And A Typical Grassland Ecosystem, Madeline Oxner

Biological and Agricultural Engineering Undergraduate Honors Theses

The Hillside Auditorium Green Roof is a low impact development feature on the University of Arkansas campus. It retains storm water and allows plants living on the roof to take up and transpire the water. Green roofs work to mimic natural ecosystems in urban environments. A key property is ecosystem respiration, which plays a large role in the global carbon cycle and is an important biologic activity indicator. The ecosystem respiration of Hillside Auditorium Green Roof was compared to a typical grassland ecosystem at the University of Arkansas farm to determine how closely the green roof is able to mimic …


Application Of The Clayff And The Dreiding Force Fields For Modeling Of Alkylated Quartz Surfaces, Aleksandr Abramov, Stefan Iglauer Apr 2019

Application Of The Clayff And The Dreiding Force Fields For Modeling Of Alkylated Quartz Surfaces, Aleksandr Abramov, Stefan Iglauer

Research outputs 2014 to 2021

To extend applicability and to overcome limitations of combining rules for nonbond potential parameters, in this study, CLAYFF and DREIDING force fields are coupled at the level of atomic site charges to model quartz surfaces with chemisorpt hydrocarbons. Density functional theory and Bader charge analysis are applied to calculate charges of atoms of the OC bond connecting a quartz crystal and an alkyl group. The study demonstrates that the hydrogen atom of the quartz surface hydroxyl group can be removed and its charge can be redistributed among the oxygen and carbon atoms of the OC bond in a manner consistent …


Wettability Of Fully Hydroxylated And Alkylated (001) Α-Quartz Surface In Carbon Dioxide Atmosphere, Aleksandr Abramov, Alireza Keshavarz, Stefan Iglauer Mar 2019

Wettability Of Fully Hydroxylated And Alkylated (001) Α-Quartz Surface In Carbon Dioxide Atmosphere, Aleksandr Abramov, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

Wettability of alkylated quartz surfaces is of primary importance in several technological applications, including the development of oil and gas reservoirs and carbon geo-sequestration. It is intuitively understood and experimentally confirmed that hydroxylated quartz surfaces are hydrophilic. By gradually saturating a hydroxylated (001) α-quartz surface with pentyl groups, we show using molecular dynamics simulations that the surface can also exhibit extreme hydrophobicity. Within a range of surface pentyl group density from 0.29 to 3.18/nm2, the contact angle of a water droplet under 10 MPa pressure of carbon dioxide at 300 K changes from 10–20 to 180°. This study …


Surface Free Energy Of Shale Gas In Niutitang Formation In Guizhou Province, Li Xijian, Yin Xin, Li Weiwei, Liu Shangping, Zhang Pei Jan 2019

Surface Free Energy Of Shale Gas In Niutitang Formation In Guizhou Province, Li Xijian, Yin Xin, Li Weiwei, Liu Shangping, Zhang Pei

Coal Geology & Exploration

In order to study the adsorption mechanism of shale for gas, the isothermal adsorption experiments on shale samples from wells Fengcan 1 and Tianma 1 in Guizhou Province were carried out at 50℃, 60℃, 80℃, and the isothermal adsorption curves of CH4 and CO2 were plotted, the shale surface free energy was calculated and the adsorption characteristics of CH4 and CO2 from shale were analyzed by the surface free energy. The results show that when the temperature is constant, the surface free energy of shale gas increases with the increase of pressure, and the change of …


Wettability Of Quartz Surfaces Under Carbon Dioxide Geo-Sequestration Conditions. A Theoretical Study, Aleksandr Abramov Jan 2019

Wettability Of Quartz Surfaces Under Carbon Dioxide Geo-Sequestration Conditions. A Theoretical Study, Aleksandr Abramov

Theses: Doctorates and Masters

The wettability of rocks under reservoir conditions is important to ensure and secure long term underground storage of carbon dioxide. The composition of those rocks vary significantly and are influenced by the fact that quartz is the second most abundant mineral in the earth's continental crust. Thus, the CO2 wettability of quartz dominates the overall CO2 trapping performance of storage and cap rocks. If depleted oil or gas reservoirs are used for storage of CO2 quartz surfaces of rocks in reservoirs which have been previously exposed to hydrocarbons might be covered with chemisorpt hydrocarbon molecules. The CO2 wettability of these …


Effect Of Pretreatment Process On Scale Formation In The Re-Boiler Section Of Monoethylene Glycol Regeneration Plant, Ammar Al Helal, Adam Soames, Stefan Iglauer, Ahmed Barifcani, Rolf Gubner Jan 2019

Effect Of Pretreatment Process On Scale Formation In The Re-Boiler Section Of Monoethylene Glycol Regeneration Plant, Ammar Al Helal, Adam Soames, Stefan Iglauer, Ahmed Barifcani, Rolf Gubner

Research outputs 2014 to 2021

Monoethylene glycol (MEG) regeneration plants often use pretreatment vessels to precipitate divalent cations, such as Fe2+, Ca2+, and Mg2+, in order to avoid or reduce fouling in downstream reboilers and heat exchangers. This pretreatment process operates under alkaline conditions and moderate temperatures (~ 80 °C) to accelerate the formation of low-solubility divalent salts. The objective of the present research was to determine whether the pretreatment process could be minimized, without negatively impacts on the MEG regeneration process from to the formation of scale on the heater bundle in the presence of low concentrations of …