Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Post-Acquisition Processing Confounds In Brain Volumetric Quantification Of White Matter Hyperintensities, Ahmed A. Bahrani, Omar M. Al-Janabi, Erin L. Abner, Shoshana H. Bardach, Richard J. Kryscio, Donna M. Wilcock, Charles D. Smith, Gregory A. Jicha Nov 2019

Post-Acquisition Processing Confounds In Brain Volumetric Quantification Of White Matter Hyperintensities, Ahmed A. Bahrani, Omar M. Al-Janabi, Erin L. Abner, Shoshana H. Bardach, Richard J. Kryscio, Donna M. Wilcock, Charles D. Smith, Gregory A. Jicha

Neurology Faculty Publications

BACKGROUND: Disparate research sites using identical or near-identical magnetic resonance imaging (MRI) acquisition techniques often produce results that demonstrate significant variability regarding volumetric quantification of white matter hyperintensities (WMH) in the aging population. The sources of such variability have not previously been fully explored.

NEW METHOD: 3D FLAIR sequences from a group of randomly selected aged subjects were analyzed to identify sources-of-variability in post-acquisition processing that can be problematic when comparing WMH volumetric data across disparate sites. The methods developed focused on standardizing post-acquisition protocol processing methods to develop a protocol with less than 0.5% inter-rater variance.

RESULTS: A series …


A Synthetic Human Brain Ecm Hydrogel For Tight Control Of Astrocyte Activation, Sualyneth Galarza Oct 2019

A Synthetic Human Brain Ecm Hydrogel For Tight Control Of Astrocyte Activation, Sualyneth Galarza

Doctoral Dissertations

Bioengineers have aimed to design instructive extracellular matrix (ECM) models that can tailor the protein composition and biomechanics of the brain in vitro in order to study how astrocytes remodel the brain during trauma and inflammation. However, these parameters cannot be independently controlled in protein-based models, and although tunable in synthetic systems, current astrocyte cultures fail to retain their characteristic stellate morphology without becoming activated. To this date, there is no biomaterial model that can retain astrocyte quiescence in vitro. This dissertation sought to develop such an in vitro model that would enable the study of specific ECM factors …


Distinct Patterns Of Default Mode And Executive Control Network Circuitry Contribute To Present And Future Executive Function In Older Adults, Christopher A. Brown, Frederick A. Schmitt, Charles D. Smith, Brian T. Gold Jul 2019

Distinct Patterns Of Default Mode And Executive Control Network Circuitry Contribute To Present And Future Executive Function In Older Adults, Christopher A. Brown, Frederick A. Schmitt, Charles D. Smith, Brian T. Gold

Neuroscience Faculty Publications

Executive function (EF) performance in older adults has been linked with functional and structural profiles within the executive control network (ECN) and default mode network (DMN), white matter hyperintensities (WMH) burden and levels of Alzheimer's disease (AD) pathology. Here, we simultaneously explored the unique contributions of these factors to baseline and longitudinal EF performance in older adults. Thirty-two cognitively normal (CN) older adults underwent neuropsychological testing at baseline and annually for three years. Neuroimaging and AD pathology measures were collected at baseline. Separate linear regression models were used to determine which of these variables predicted composite EF scores at baseline …


Role Of P-Glycoprotein In Alzheimer’S Disease For Enhanced Brain Elimination Of Amyloid-Β, Hope Holt Apr 2019

Role Of P-Glycoprotein In Alzheimer’S Disease For Enhanced Brain Elimination Of Amyloid-Β, Hope Holt

Theses and Dissertations

Alzheimer’s disease (AD), the most common form of neurodegenerative disorder, is characterized by deposition of amyloid-β (Aβ) plaques in the brain. Aβ monomer undergoes nucleation to form oligomers, then soluble aggregates, then fibrils which make up the plaques. Aβ oligomer species are believed to be the most neurotoxic aggregate species. Currently under investigation is a mechanism for Aβ removal from the brain, across the blood-brain barrier (BBB). P-glycoprotein (P-gp) is a membrane-bound efflux protein located on the apical, or blood, side of the BBB, which transports a wide variety of substrates. Further complicating this potential clearance mechanism is the reduction …


A Pilot Study Identifying Brain-Targeting Adaptive Immunity In Pediatric Extracorporeal Membrane Oxygenation Patients With Acquired Brain Injury, Sterling B. Ortega, Poornima Pandiyan, Jana Windsor, Vanessa O. Torres, Uma M. Selvaraj, Amy Lee, Michael Morriss, Fenghua Tian, Lakshmi Raman, Ann M. Stowe Mar 2019

A Pilot Study Identifying Brain-Targeting Adaptive Immunity In Pediatric Extracorporeal Membrane Oxygenation Patients With Acquired Brain Injury, Sterling B. Ortega, Poornima Pandiyan, Jana Windsor, Vanessa O. Torres, Uma M. Selvaraj, Amy Lee, Michael Morriss, Fenghua Tian, Lakshmi Raman, Ann M. Stowe

Neurology Faculty Publications

OBJECTIVES: Extracorporeal membrane oxygenation provides short-term cardiopulmonary life support, but is associated with peripheral innate inflammation, disruptions in cerebral autoregulation, and acquired brain injury. We tested the hypothesis that extracorporeal membrane oxygenation also induces CNS-directed adaptive immune responses which may exacerbate extracorporeal membrane oxygenation-associated brain injury.

DESIGN: A single center prospective observational study.

SETTING: Pediatric and cardiac ICUs at a single tertiary care, academic center.

PATIENTS: Twenty pediatric extracorporeal membrane oxygenation patients (0-14 yr; 13 females, 7 males) and five nonextracorporeal membrane oxygenation Pediatric Logistic Organ Dysfunction score matched patients.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Venous blood samples were …


Clinically Amendable, Defined, And Rapid Induction Of Human Brain Organoids From Induced Pluripotent Stem Cells, Eva Tomaskovic-Crook, Jeremy Micah Crook Jan 2019

Clinically Amendable, Defined, And Rapid Induction Of Human Brain Organoids From Induced Pluripotent Stem Cells, Eva Tomaskovic-Crook, Jeremy Micah Crook

Australian Institute for Innovative Materials - Papers

Human brain organoids provide opportunities to produce three-dimensional (3D) brain-like tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a protocol for rapid and defined induction of brain organoids from human induced pluripotent stem cells (iPSCs), using commercially available culture and differentiation media and a cheap, easy to handle and clinically approved semisynthetic hydrogel. Importantly, the methodology is uncomplicated, well-defined, and reliable for reproducible and scalable organoid generation, and amendable to principles of current good laboratory practice (cGLP), with the potential for prospective adaptation to current good manufacturing practice (cGMP) toward clinical compliance.