Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Engineering

Pt Nanoparticles Decorated Heterostructured G-C3n4/Bi2moo6 Microplates With Highly Enhanced Photocatalytic Activities Under Visible Light, Z. Jia, F. Lyu, Laichang Zhang, S. Zeng, Shunxing Liang, Y. Y. Li, J. Lu May 2019

Pt Nanoparticles Decorated Heterostructured G-C3n4/Bi2moo6 Microplates With Highly Enhanced Photocatalytic Activities Under Visible Light, Z. Jia, F. Lyu, Laichang Zhang, S. Zeng, Shunxing Liang, Y. Y. Li, J. Lu

Research outputs 2014 to 2021

Exploring an efficient and photostable heterostructured photocatalyst is a pivotal scientific topic for worldwide energy and environmental concerns. Herein, we reported that Pt decorated g-C3N4/Bi2MoO6 heterostructured composites with enhanced photocatalytic performance under visible light were simply synthesized by one-step hydrothermal method for methylene blue (MB) dye degradation. Results revealed that the synthetic Pt decorated g-C3N4/Bi2MoO6 composites with Bi2MoO6 contents of 20 wt.% (Pt@CN/20%BMO) presented the highest photocatalytic activity, exhibiting 7 and 18 times higher reactivity than the pure g-C3N4 and …


Application Of The Clayff And The Dreiding Force Fields For Modeling Of Alkylated Quartz Surfaces, Aleksandr Abramov, Stefan Iglauer Apr 2019

Application Of The Clayff And The Dreiding Force Fields For Modeling Of Alkylated Quartz Surfaces, Aleksandr Abramov, Stefan Iglauer

Research outputs 2014 to 2021

To extend applicability and to overcome limitations of combining rules for nonbond potential parameters, in this study, CLAYFF and DREIDING force fields are coupled at the level of atomic site charges to model quartz surfaces with chemisorpt hydrocarbons. Density functional theory and Bader charge analysis are applied to calculate charges of atoms of the OC bond connecting a quartz crystal and an alkyl group. The study demonstrates that the hydrogen atom of the quartz surface hydroxyl group can be removed and its charge can be redistributed among the oxygen and carbon atoms of the OC bond in a manner consistent …


Wettability Of Fully Hydroxylated And Alkylated (001) Α-Quartz Surface In Carbon Dioxide Atmosphere, Aleksandr Abramov, Alireza Keshavarz, Stefan Iglauer Mar 2019

Wettability Of Fully Hydroxylated And Alkylated (001) Α-Quartz Surface In Carbon Dioxide Atmosphere, Aleksandr Abramov, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

Wettability of alkylated quartz surfaces is of primary importance in several technological applications, including the development of oil and gas reservoirs and carbon geo-sequestration. It is intuitively understood and experimentally confirmed that hydroxylated quartz surfaces are hydrophilic. By gradually saturating a hydroxylated (001) α-quartz surface with pentyl groups, we show using molecular dynamics simulations that the surface can also exhibit extreme hydrophobicity. Within a range of surface pentyl group density from 0.29 to 3.18/nm2, the contact angle of a water droplet under 10 MPa pressure of carbon dioxide at 300 K changes from 10–20 to 180°. This study …


Capacitive Sensor And Its Calibration: A Technique For The Estimation Of Solid Particles Flow Concentration, Usama Abrar, Liu Shi, Nasif R. Jaffri, Qin Li, Mian W. Omar, Hassan R. Sindhu Jan 2019

Capacitive Sensor And Its Calibration: A Technique For The Estimation Of Solid Particles Flow Concentration, Usama Abrar, Liu Shi, Nasif R. Jaffri, Qin Li, Mian W. Omar, Hassan R. Sindhu

Research outputs 2014 to 2021

The precise and accurate measurement of flow rate in the batch flow of the solid particles is of primary importance in many process industries for the improvement of the efficiency of the system. Many techniques developed for the measurement of mass flow rate. The capacitive sensors has a significance of being non-invasive, higher accuracy and low cost for mass flow measurement despite the fact that many factors adversely affect the performance- including non-uniform flow, multiphase flow, temperature, pressure, and moisture in the solid particles. This paper covers preliminary investigations of the offline estimation of mass flow concentration based upon the …


Assesment Of Electricity Excess In An Isolated Hybrid Energy System: A Case Study Of A Dangiwada Village In Rural Nepal, Ashish Shrestha, Lalit Bickram Rana, Ajay Singh, Sudip Phuyal, Anil Ghimire, Roshan Giri, Roshan Kattel, Kedar Karki, Shailendra Kumar Jha Jan 2019

Assesment Of Electricity Excess In An Isolated Hybrid Energy System: A Case Study Of A Dangiwada Village In Rural Nepal, Ashish Shrestha, Lalit Bickram Rana, Ajay Singh, Sudip Phuyal, Anil Ghimire, Roshan Giri, Roshan Kattel, Kedar Karki, Shailendra Kumar Jha

Research outputs 2014 to 2021

The increasing demand of power can be fulfilled through different architectures and electricity supply models by utilizing the available local resources. But most of the isolated energy system suffers from high energy cost and unreliable energy supply. This study identifies different electricity supply models to fulfill the dynamic demand of power in a remote area, which is analyzed in terms of cost of energy and causes for the high cost of energy. Among different factors, the presence of unusable energy (Electricity Excess) produced by the energy system during fulfillment of the demand is found to be major one cause for …


Enhancing Heat Pipe Solar Water Heating Systems Performance Using A Novel Variable Mass Flow Rate Technique And Different Solar Working Fluids, Abdellah Shafieian, Junaid Jaffer Osman, Mehdi Khiadani, Ataollah Nosrati Jan 2019

Enhancing Heat Pipe Solar Water Heating Systems Performance Using A Novel Variable Mass Flow Rate Technique And Different Solar Working Fluids, Abdellah Shafieian, Junaid Jaffer Osman, Mehdi Khiadani, Ataollah Nosrati

Research outputs 2014 to 2021

This paper aims to improve the overall efficiency of heat pipe solar water heating (HPSWH) systems by implementing a novel variable mass flow rate technique which regulates the solar working fluid mass flow rate of the system with the solar radiation intensity. To analyse the system under real operational conditions, the residential hot water consumption pattern of Perth residents in Western Australia was used in the experiments. In addition, a nanofluid (Al2O3/DI) was fabricated and its performance as the solar working fluid was investigated to find the optimum concentration and to confirm its stability and thermo-physical …


Optimization Of Well Pad Design And Drilling - Well Clustering, Aleksandr Abramov Jan 2019

Optimization Of Well Pad Design And Drilling - Well Clustering, Aleksandr Abramov

Research outputs 2014 to 2021

A model accounting for more than 30 parameters of drilling projects, and a computer program to enumerate groupings of the wells of a pad with consequent calculations of technical-economic characteristics, are developed and tested. Seven drilling scenarios for a 24-well pad with different starting oil flow rates for the wells are studied. Optimal well groupings in terms of Net Present Value (NPV) for three discount rates and five oil production decline rates have been found. The results show that: NPV-maximizing well pad designs with unequal (varying) numbers of wells in groups (clusters) may require only slight alterations …


A Novel Solar-Driven Direct Contact Membrane-Based Water Desalination System, Abdellah Sharifian, Mehdi Khiadani Jan 2019

A Novel Solar-Driven Direct Contact Membrane-Based Water Desalination System, Abdellah Sharifian, Mehdi Khiadani

Research outputs 2014 to 2021

This study proposes a novel integrated solar membrane-based desalination system. The system includes vacuum glass tubes to increase absorbed solar energy and to decrease heat loss, heat pipes to transfer the absorbed energy efficiently, and a tubular direct contact membrane distillation module to use the absorbed energy more effectively. To improve the freshwater production rate and overall efficiency of the proposed system, a cooling unit was also added to the permeate loop of the desalination unit. The performance of the system was experimentally investigated without (Case I) and with (Case II) the cooling unit in summer and without the cooling …


A Numerical Study Of Axisymmetric Wave Propagation In Buried Fluid-Filled Pipes For Optimizing The Vibro-Acoustic Technique When Locating Gas Pipelines, Ying Liu, Daryoush Habibi, Douglas Chai, Xiuming Wang, Hao Chen Jan 2019

A Numerical Study Of Axisymmetric Wave Propagation In Buried Fluid-Filled Pipes For Optimizing The Vibro-Acoustic Technique When Locating Gas Pipelines, Ying Liu, Daryoush Habibi, Douglas Chai, Xiuming Wang, Hao Chen

Research outputs 2014 to 2021

Buried pipeline systems play a vital role in energy storage and transportation, especially for fluid energies like water and gas. The ability to locate buried pipes is of great importance since it is fundamental for leakage detection, pipeline maintenance, and pipeline repair. The vibro-acoustic locating method, as one of the most effective detection technologies, has been studied by many researchers. However, previous studies have mainly focused on vibro-acoustic propagation in buried water pipes. Limited research has been conducted on buried gas pipes. In this paper, the behavior of gas-dominated wave motion will be investigated and compared against water-dominated wave motion …


A Statistical Approach To Provide Explainable Convolutional Neural Network Parameter Optimization, Saman Akbarzadeh, Selam Ahderom, Kamal Alameh Jan 2019

A Statistical Approach To Provide Explainable Convolutional Neural Network Parameter Optimization, Saman Akbarzadeh, Selam Ahderom, Kamal Alameh

Research outputs 2014 to 2021

Algorithms based on convolutional neural networks (CNNs) have been great attention in image processing due to their ability to find patterns and recognize objects in a wide range of scientific and industrial applications. Finding the best network and optimizing its hyperparameters for a specific application are central challenges for CNNs. Most state-of-the-art CNNs are manually designed, while techniques for automatically finding the best architecture and hyperparameters are computationally intensive, and hence, there is a need to severely limit their search space. This paper proposes a fast statistical method for CNN parameter optimization, which can be applied in many CNN applications …


Taylor's Slope Stability Chart For Combined Effects Of Horizontal And Vertical Seismic Coefficients, Pragyan Sahoo, Sanjay Kumar Shukla Jan 2019

Taylor's Slope Stability Chart For Combined Effects Of Horizontal And Vertical Seismic Coefficients, Pragyan Sahoo, Sanjay Kumar Shukla

Research outputs 2014 to 2021

Design standards and codes of practice on earth slope stability often recommend the pseudo-static method of analysis for determining the factor of safety of a slope subjected to seismic forces. In most pseudo-static methods of analysis, the horizontal seismic force is considered without due weightage to vertical seismic force. In the past, Taylor's stability chart for a homogeneous cohesive-frictional soil slope has been extended to consider the effect of horizontal seismic force only. In this paper, an attempt is made to develop an analytical formulation considering both horizontal and vertical seismic forces in order to estimate the factor of safety …


Deformation And Strength Characteristics Of Laves Phases In Titanium Alloys, Chirag D. Rabadia, Y. J. Liu, Liang-Yu Chen, Syed F. Jawed, L. Q. Wang, Hongqi Sun, Laichang Zhang Jan 2019

Deformation And Strength Characteristics Of Laves Phases In Titanium Alloys, Chirag D. Rabadia, Y. J. Liu, Liang-Yu Chen, Syed F. Jawed, L. Q. Wang, Hongqi Sun, Laichang Zhang

Research outputs 2014 to 2021

The superior reinforcement nature of Laves phases make them suitable for high-strength applications. Therefore, investigations on the deformation and strength characteristics of Laves phases are useful in development of an improved Laves phase-reinforced alloy. In this work, the Vickers micro-indentation method is used to evaluate and compare the deformation and strength characteristics of a hexagonal close-packed Laves phase (C14-type) in Ti-35Zr-5Fe-6Mn (wt%) and a face-centered cubic Laves phase (C15-type) in Ti-33Zr-7Fe-4Cr (wt%), considering the same volume fraction of Laves phase (~7.0%) in these alloys. Moreover, the effects of higher volume fraction of Laves phase (19.4%) on indentation-based deformation features are …


Theoretical Modelling Approaches Of Heat Pipe Solar Collectors In Solar Systems: A Comprehensive Review, Abdellah Sharifian, Mehdi Khiadani, Ataollah Nosrati Jan 2019

Theoretical Modelling Approaches Of Heat Pipe Solar Collectors In Solar Systems: A Comprehensive Review, Abdellah Sharifian, Mehdi Khiadani, Ataollah Nosrati

Research outputs 2014 to 2021

The invention of heat pipe solar collectors (HPSCs) is considered as an immense step forward towards solving the challenges of conventional solar thermal systems. Their unique qualities have acted as a great motivation for researchers to focus their studies on HPSCs and their applications. A considerable share of these studies has been allocated to theoretical studies due to several technical and economic reasons. However, to the authors’ knowledge and despite many valuable efforts in this field, there is no review paper available to summarise the relevant proposed and developed theoretical models to date and identifies the research gaps in this …


Performance Analysis Of A Thermal-Driven Tubular Direct Contact Membrane Distillation System, Abdellah Sharifian, Mehdi Khiadani, Ataollah Nosrati Jan 2019

Performance Analysis Of A Thermal-Driven Tubular Direct Contact Membrane Distillation System, Abdellah Sharifian, Mehdi Khiadani, Ataollah Nosrati

Research outputs 2014 to 2021

This paper examines the performance of a thermal-driven tubular direct contact membrane distillation (DCMD) system theoretically and experimentally. A multi-step mathematical model was developed to predict the freshwater productivity of the tubular DCMD module applicable for both small and large-scale applications by considering the changes in the operational variables along the membrane’s length. The proposed model was verified by building an experimental rig which was tested under different operational conditions. The results showed that keeping the mass flow rates in the hot and cold channels either near the end or beyond the transition range of the flows results in higher …


Beta-Type Ti-Nb-Zr-Cr Alloys With Large Plasticity And Significant Strain Hardening, Syed F. Jawed, Chirag D. Rabadia, Y. J. Liu, L. Q. Wang, Y. H. Li, X. H. Zang, Laichang C. Zhang Jan 2019

Beta-Type Ti-Nb-Zr-Cr Alloys With Large Plasticity And Significant Strain Hardening, Syed F. Jawed, Chirag D. Rabadia, Y. J. Liu, L. Q. Wang, Y. H. Li, X. H. Zang, Laichang C. Zhang

Research outputs 2014 to 2021

A series of Ti-25Nb-8Zr-xCr (x = 0, 2, 4, 6, 8 wt%) alloys were designed based on DV-Xα cluster method and e=a-Δr diagram with an anticipation to obtain high plasticity and significant strain hardening. The designed alloys were produced through cold crucible levitation melting technique in order to effectively investigate their micro-structures and mechanical properties. The addition of Cr significantly enhances the β stability in the microstructures of the Ti-25Nb-8Zr-xCr alloys. Both yield strength and hardness of the studied alloys increase due to the effect of solid-solution strengthening. By contrast, the plasticity, maximum strength and strain hardening rate are influenced …


Real-Time Classification Of Multivariate Olfaction Data Using Spiking Neural Networks, Arnup Vanarse, Adam Osseiran, Alexander Rassau, Therese O'Sullivan, Jonny Lo, Amanda Devine Jan 2019

Real-Time Classification Of Multivariate Olfaction Data Using Spiking Neural Networks, Arnup Vanarse, Adam Osseiran, Alexander Rassau, Therese O'Sullivan, Jonny Lo, Amanda Devine

Research outputs 2014 to 2021

Recent studies in bioinspired artificial olfaction, especially those detailing the application of spike-based neuromorphic methods, have led to promising developments towards overcoming the limitations of traditional approaches, such as complexity in handling multivariate data, computational and power requirements, poor accuracy, and substantial delay for processing and classification of odors. Rank-order-based olfactory systems provide an interesting approach for detection of target gases by encoding multi-variate data generated by artificial olfactory systems into temporal signatures. However, the utilization of traditional pattern-matching methods and unpredictable shuffling of spikes in the rank-order impedes the performance of the system. In this paper, we present an …


A Hardware-Deployable Neuromorphic Solution For Encoding And Classification Of Electronic Nose Data, Anup Vanarse, Alexander Rassau, Peter Van Der Made Jan 2019

A Hardware-Deployable Neuromorphic Solution For Encoding And Classification Of Electronic Nose Data, Anup Vanarse, Alexander Rassau, Peter Van Der Made

Research outputs 2014 to 2021

In several application domains, electronic nose systems employing conventional data processing approaches incur substantial power and computational costs and limitations, such as significant latency and poor accuracy for classification. Recent developments in spike-based bio-inspired approaches have delivered solutions for the highly accurate classification of multivariate sensor data with minimized computational and power requirements. Although these methods have addressed issues related to efficient data processing and classification accuracy, other areas, such as reducing the processing latency to support real-time application and deploying spike-based solutions on supported hardware, have yet to be studied in detail. Through this investigation, we proposed a spiking …


Chemically Dealloyed Fe-Based Metallic Glass With Void Channels-Like Architecture For Highly Enhanced Peroxymonosulfate Activation In Catalysis, J.C. Wang, S.X. Liang, Z. Jia, W.C. Zhang, W.M. Wang, Y.J. Lui, J. Lu, L.C Zhang Jan 2019

Chemically Dealloyed Fe-Based Metallic Glass With Void Channels-Like Architecture For Highly Enhanced Peroxymonosulfate Activation In Catalysis, J.C. Wang, S.X. Liang, Z. Jia, W.C. Zhang, W.M. Wang, Y.J. Lui, J. Lu, L.C Zhang

Research outputs 2014 to 2021

Metallic glasses (MGs) with their intrinsic disordered atomic structure and widely controllable atomic components have recently emerged as fascinating functional materials in wastewater treatment. Compared to crystalline alloys, the less-noble atomic components in monolithic metallic glass are more efficient to be selectively dissolved during dealloying process. This work reported a facile chemical dealloying approach to fabricate a void channels-like structured MG with the elemental components of Fe73.5Si13.5B9Cu1Nb3 for methylene blue (MB) degradation. Results indicated that the dealloyed Fe73.5Si13.5B9Cu1Nb3 MGs with the void channels-like morphology presented a significant improvement of catalytic efficiency and reusability. The dye degradation reaction rate (kobs) of …


Calculation Of Critical Water Flow Rates For Wildfire Suppression, Greg Penney, Daryoush Habibi, Marcus Cattani, Murray Carter Jan 2019

Calculation Of Critical Water Flow Rates For Wildfire Suppression, Greg Penney, Daryoush Habibi, Marcus Cattani, Murray Carter

Research outputs 2014 to 2021

Predicting water suppression requirements and its impacts on firefighting strategies and logistics within the urban environment has been the subject of many previous studies, however the same level of research has yet to be applied in the realm of wildfire suppression. To work towards addressing this knowledge gap, this paper provides guidance for Incident Controllers in relation to critical water flow rates required to extinguish large wildfire across a wide range of forest fuel loads, fire weather and active fire front depths. This is achieved through mathematical empirical analysis of water flow rates required for head fire suppression during 540 …


Effective Plant Discrimination Based On The Combination Of Local Binary Pattern Operators And Multiclass Support Vector Machine Methods, Vi N T Le, Beniamin Apopei, Kamal Alameh Jan 2019

Effective Plant Discrimination Based On The Combination Of Local Binary Pattern Operators And Multiclass Support Vector Machine Methods, Vi N T Le, Beniamin Apopei, Kamal Alameh

Research outputs 2014 to 2021

Accurate crop and weed discrimination plays a critical role in addressing the challenges of weed management in agriculture. The use of herbicides is currently the most common approach to weed control. However, herbicide resistant plants have long been recognised as a major concern due to the excessive use of herbicides. Effective weed detection techniques can reduce the cost of weed management and improve crop quality and yield. A computationally efficient and robust plant classification algorithm is developed and applied to the classification of three crops: Brassica napus (canola), Zea mays (maize/corn), and radish. The developed algorithm is based on the …


Thermal Performance Of An Evacuated Tube Heat Pipe Solar Water Heating System In Cold Season, Abdellah Sharifian, Mehdi Khiadani, Ataollah Nosrati Jan 2019

Thermal Performance Of An Evacuated Tube Heat Pipe Solar Water Heating System In Cold Season, Abdellah Sharifian, Mehdi Khiadani, Ataollah Nosrati

Research outputs 2014 to 2021

This study evaluates the performance of a heat pipe solar water heating system to meet a real residential hot water consumption pattern theoretically and experimentally under non-ideal climatic conditions during a cold day in Perth, Western Australia. A mathematical model was developed and used to calculate the optimum number of glass tubes of the heat pipe solar collector. Based on the obtained data, an experimental rig with 25 glass tubes was designed, built, and tested as the temperature changes after 25 tubes reached the insignificant value of 0.6%. The results showed that hot water extraction had significant impact on the …