Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Monitoring Silane Sol-Gel Kinetics With In-Situ Optical Turbidity Scanning And Dynamic Light Scattering, Abul Bashar Mohammad Giasuddin, David W. Britt Aug 2019

Monitoring Silane Sol-Gel Kinetics With In-Situ Optical Turbidity Scanning And Dynamic Light Scattering, Abul Bashar Mohammad Giasuddin, David W. Britt

Biological Engineering Faculty Publications

Organosilanes (e.g., R’-SiOR3) provide hydrophobic functionality in thin-film coatings, porous gels, and particles. Compared with tetraalkoxysilanes (SiOR4), organosilanes exhibit distinct reaction kinetics and assembly mechanisms arising from steric and electronic properties of the R’ group on the silicon atom. Here, the hydrolysis and condensation pathways of n-propyltrimethoxy silane (nPM) and a tri-fluorinated analog of nPM, 3,3,3-trifluoropropyl trimethoxy silane (3F), were investigated under aqueous conditions at pH 1.7, 2.0, 3.0, and 4.0. Prior to hydrolysis, 3F and nPM are insoluble in water and form a lens at the bottom (3F) or top (nPM) of the solutions. This …


Workshop On Convergence In Biological Engineering, Keith Roper Aug 2019

Workshop On Convergence In Biological Engineering, Keith Roper

Funded Research Records

No abstract provided.


Application Of Micro-Scale 3d Printing In Pharmaceutics, Andrew Kjar, Yu Huang Aug 2019

Application Of Micro-Scale 3d Printing In Pharmaceutics, Andrew Kjar, Yu Huang

Biological Engineering Faculty Publications

3D printing, as one of the most rapidly-evolving fabrication technologies, has released a cascade of innovation in the last two decades. In the pharmaceutical field, the integration of 3D printing technology has offered unique advantages, especially at the micro-scale. When printed at a micro-scale, materials and devices can provide nuanced solutions to controlled release, minimally invasive delivery, high-precision targeting, biomimetic models for drug discovery and development, and future opportunities for personalized medicine. This review aims to cover the recent advances in this area. First, the 3D printing techniques are introduced with respect to the technical parameters and features that are …


Discovery And Engineering Of An Endophytic Pseudomonas Strain From Taxus Chinensis For Efficient Production Of Zeaxanthin Diglucoside, Ozkan Fidan, Jixun Zhan Aug 2019

Discovery And Engineering Of An Endophytic Pseudomonas Strain From Taxus Chinensis For Efficient Production Of Zeaxanthin Diglucoside, Ozkan Fidan, Jixun Zhan

Biological Engineering Faculty Publications

Background

Endophytic microorganisms are a rich source of bioactive natural products. They are considered as promising biofertilizers and biocontrol agents due to their growth-promoting interactions with the host plants and their bioactive secondary metabolites that can help manage plant pathogens. Identification of new endophytes may lead to the discovery of novel molecules or provide new strains for production of valuable compounds.

Results

In this study, we isolated an endophytic bacterium from the leaves of Taxus chinensis, which was identified as Pseudomonas sp. 102515 based on the 16S rRNA gene sequence and physiological characteristics. Analysis of its secondary metabolites revealed …


Modified Substrate Specificity Of A Methyltransferase Domain By Protein Insertion Into An Adenylation Domain Of The Bassianolide Synthetase, Fuchao Xu, Russell Butler, Kyle M. May, Megi Rexhepaj, Dayu Yu, Jiachen Zi, Yi Chen, Yonghong Liang, Jia Zeng, Joan Hevel, Jixun Zhan Jul 2019

Modified Substrate Specificity Of A Methyltransferase Domain By Protein Insertion Into An Adenylation Domain Of The Bassianolide Synthetase, Fuchao Xu, Russell Butler, Kyle M. May, Megi Rexhepaj, Dayu Yu, Jiachen Zi, Yi Chen, Yonghong Liang, Jia Zeng, Joan Hevel, Jixun Zhan

Chemistry and Biochemistry Faculty Presentations

Background: Creating designer molecules using a combination of select domains from polyketide synthases and/or nonribosomal peptide synthetases (NRPS) continues to be a synthetic goal. However, an incomplete understanding of how protein-protein interactions and dynamics affect each of the domain functions stands as a major obstacle in the field. Of particular interest is understanding the basis for a class of methyltransferase domains (MT) that are found embedded within the adenylation domain (A) of fungal NRPS systems instead of in an end-to-end architecture.

Results: The MT domain from bassianolide synthetase (BSLS) was removed and the truncated enzyme BSLS-ΔMT was recombinantly expressed. The …


Unravel The Cellular Biophysical Dynamics Of Spatial Constraint-Induced Membrane Blebbing And 3d Migration Using A Microfluidic Platform And Data-Driven Mathematical Modeling, Yu Huang Jun 2019

Unravel The Cellular Biophysical Dynamics Of Spatial Constraint-Induced Membrane Blebbing And 3d Migration Using A Microfluidic Platform And Data-Driven Mathematical Modeling, Yu Huang

Funded Research Records

No abstract provided.


Improved Production Of Antifungal Angucycline Sch47554 By Manipulating Three Regulatory Genes In Streptomyces Sp. Scc-2136, Ozkan Fidan, Riming Yan, Du Zhu, Jixun Zhan Apr 2019

Improved Production Of Antifungal Angucycline Sch47554 By Manipulating Three Regulatory Genes In Streptomyces Sp. Scc-2136, Ozkan Fidan, Riming Yan, Du Zhu, Jixun Zhan

Biological Engineering Faculty Publications

Sch47554 and Sch47555 are two angucyclines with antifungal activities against various yeasts and dermatophytes from Streptomyces sp. SCC‐2136. The schgene cluster contains several putative regulatory genes. Both schA4 and schA21were predicted as the TetR family transcriptional regulators, whereas schA16shared significant similarity to the AraC family transcriptional regulators. Although Sch47554 is the major product of Streptomyces sp. SCC‐2136, its titer is only 6.72 mg/L. This work aimed to increase the production of this promising antifungal compound by investigating and manipulating the regulatory genes in the Sch47554 biosynthetic pathway. Disruption of schA4and schA16 led to a significant increase …


Use Of Surface-Enhanced Raman Scattering (Sers) Probes To Detect Fatty Acid Receptor Activity In A Microfluidic Device, Han Zhang, Wei Zhang, Lifu Xiao, Yan Liu, Timothy A. Gilbertson, Anhong Zhou Apr 2019

Use Of Surface-Enhanced Raman Scattering (Sers) Probes To Detect Fatty Acid Receptor Activity In A Microfluidic Device, Han Zhang, Wei Zhang, Lifu Xiao, Yan Liu, Timothy A. Gilbertson, Anhong Zhou

Biological Engineering Faculty Publications

In this study, 4-mercaptobenzoic acid (MBA)-Au nanorods conjugated with a GPR120 antibody were developed as a highly sensitive surface-enhanced Raman spectroscopy (SERS) probe, and were applied to detect the interaction of fatty acids (FA) and their cognate receptor, GPR120, on the surface of human embryonic kidney cells (HEK293-GPRR120) cultured in a polydimethylsiloxane (PDMS) microfluidic device. Importantly, the two dominant characteristic SERS peaks of the Raman reporter molecule MBA, 1078 cm−1 and 1581 cm−1, do not overlap with the main Raman peaks from the PDMS substrate when the appropriate spectral scanning range is selected, which effectively avoided the …


Develop A 3d Neurological Disease Model Of Human Cortical Glutamatergic Neurons Using Micropillar-Based Scaffolds, Cheng Chen, Xin Dong, Kai-Heng Fang, Fang Yuan, Yao Hu, Min Xu, Yu Huang, Xixiang Zhang, Danjun Fang, Yan Liu Mar 2019

Develop A 3d Neurological Disease Model Of Human Cortical Glutamatergic Neurons Using Micropillar-Based Scaffolds, Cheng Chen, Xin Dong, Kai-Heng Fang, Fang Yuan, Yao Hu, Min Xu, Yu Huang, Xixiang Zhang, Danjun Fang, Yan Liu

Biological Engineering Faculty Publications

Establishing an effective three-dimensional (3D) in vitro culture system to better model human neurological diseases is desirable, since the human brain is a 3D structure. Here, we demonstrated the development of a polydimethylsiloxane (PDMS) pillar-based 3D scaffold that mimicked the 3D microenvironment of the brain. We utilized this scaffold for the growth of human cortical glutamatergic neurons that were differentiated from human pluripotent stem cells. In comparison with the 2D culture, we demonstrated that the developed 3D culture promoted the maturation of human cortical glutamatergic neurons by showing significantly more MAP2 and less Ki67 expression. Based on this 3D culture …


Muscle Atrophy Marker Expression Differs Between Rotary Cell Culture System And Animal Studies, Charles P. Harding, Elizabeth Vargis Feb 2019

Muscle Atrophy Marker Expression Differs Between Rotary Cell Culture System And Animal Studies, Charles P. Harding, Elizabeth Vargis

Biological Engineering Faculty Publications

Muscular atrophy, defined as the loss of muscle tissue, is a serious issue for immobilized patients on Earth and for humans during spaceflight, where microgravity prevents normal muscle loading. In vitro modeling is an important step in understanding atrophy mechanisms and testing countermeasures before animal trials. The most ideal environment for modeling must be empirically determined to best mimic known responses in vivo. To simulate microgravity conditions, murine C2C12 myoblasts were cultured in a rotary cell culture system (RCCS). Alginate encapsulation was compared against polystyrene microcarrier beads as a substrate for culturing these adherent muscle cells. Changes after culture …