Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Enhanced Crystallinity Of Triple-Cation Perovskite Film Via Doping Nh4Scn, Ziji Liu, Detao Liu, Hao Chen, Long Ji, Hualin Zheng, Yiding Gu, Feng Wang, Zhi Chen, Shibin Li Sep 2019

Enhanced Crystallinity Of Triple-Cation Perovskite Film Via Doping Nh4Scn, Ziji Liu, Detao Liu, Hao Chen, Long Ji, Hualin Zheng, Yiding Gu, Feng Wang, Zhi Chen, Shibin Li

Electrical and Computer Engineering Faculty Publications

The trap-state density in perovskite films largely determines the photovoltaic performance of perovskite solar cells (PSCs). Increasing the crystal grain size in perovskite films is an effective method to reduce the trap-state density. Here, we have added NH4SCN into perovskite precursor solution to obtain perovskite films with an increased crystal grain size. The perovskite with increased crystal grain size shows a much lower trap-state density compared with reference perovskite films, resulting in an improved photovoltaic performance in PSCs. The champion photovoltaic device has achieved a power conversion efficiency of 19.36%. The proposed method may also impact other optoelectronic …


Fast Growth Of Thin Mapbi3 Crystal Wafers On Aqueous Solution Surface For Efficient Lateral-Structure Perovskite Solar Cells, Ye Liu, Qingfeng Dong, Yanjun Fang, Yuze Lin, Yehao Deng, Jinsong Huang Jan 2019

Fast Growth Of Thin Mapbi3 Crystal Wafers On Aqueous Solution Surface For Efficient Lateral-Structure Perovskite Solar Cells, Ye Liu, Qingfeng Dong, Yanjun Fang, Yuze Lin, Yehao Deng, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Solar-grade single or multiple crystalline wafers are needed in large quantities in the solar cell industry, and are generally formed by a top-down process from crystal ingots, which causes a significant waste of materials and energy during slicing, polishing, and other processing. Here, a bottom-up technique that allows the growth of wafer-size hybrid perovskite multiple crystals directly from aqueous solution is reported. Single-crystalline hybrid perovskite wafers with centimeter size are grown at the top surface of a perovskite precursor solution. As well as saving raw materials, this method provides unprecedented advantages such as easily tunable thickness and rapid growth of …