Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Thin-Walled Steel Tubular Circular Columns With Uniform And Graded Thickness Under Bidirectional Cyclic Loading, Qusay Al-Kaseasbeh, Iraj H.P. Mamaghani Dec 2019

Thin-Walled Steel Tubular Circular Columns With Uniform And Graded Thickness Under Bidirectional Cyclic Loading, Qusay Al-Kaseasbeh, Iraj H.P. Mamaghani

Civil Engineering Faculty Publications

Thin-walled steel tubular circular columns are becoming an increasingly attractive choice as cantilever bridge piers due to their architectural, structural and constructional advantages. This paper aims to evaluate the strength and ductility of thin-walled steel tubular circular columns with uniform thickness (BC) and graded thickness (BGC) under bidirectional cyclic lateral loading in the presence of constant axial force. The analysis is carried out using a finite-element model (FEM) which is substantiated based on the experimental results in the literature. Then, the proposed BGC column with size and volume of material equivalent to the BC column is investigated. As a part …


Development Of A Mix Design Adjustment Method For Fiber Reinforced Concrete And Super High Performance Concrete Based On Excess Paste, Joe Malloy Dec 2019

Development Of A Mix Design Adjustment Method For Fiber Reinforced Concrete And Super High Performance Concrete Based On Excess Paste, Joe Malloy

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

The main objective of this study was to develop a mix design adjustment method for Fiber Reinforced Concrete (FRC) that would maintain appropriate workability while improving hardened concrete performance. A literature review was conducted to examine existing methods for adjusting mix designs to account for fiber introduction. It was found that while increasing fine aggregate and cement paste content can make up for lost workability with the addition of fibers, no rational mix design adjustment method is available. Reference mix designs from the Nevada Department of Transportation and the Nebraska Department of Transportation were used, and this study focused on …


Multifunctional Lightweight Aggregate Containing Phase Change Material And Water For Damage Mitigation Of Concrete, Wenyu Liao, Aditya Kumar, Kamal Khayat, Hongyan Ma Dec 2019

Multifunctional Lightweight Aggregate Containing Phase Change Material And Water For Damage Mitigation Of Concrete, Wenyu Liao, Aditya Kumar, Kamal Khayat, Hongyan Ma

Materials Science and Engineering Faculty Research & Creative Works

This paper presents an innovative concept of multifunctional lightweight aggregate, which is produced by loading phase change material (PCM) into the interior of lightweight sand (LWS) and sealing the surface pores using water. The PCM loaded in the LWS functionalizes it as a temperature management agent in concrete, and the water in surface pores enables internal curing. It has been found that the particle shape and pore structure of crushed expanded shale LWS makes it an ideal carrier for PCM, loading sufficient PCM and maintaining better (compared to natural sand) mechanical interlocking. When coupled with the internal curing effect, the …


Ductile Corrosion-Free Self-Centering Concrete Elements, Maged Youssef, Mohamed E. Meshaly, Ahmed Elansary Jan 2019

Ductile Corrosion-Free Self-Centering Concrete Elements, Maged Youssef, Mohamed E. Meshaly, Ahmed Elansary

Civil and Environmental Engineering Publications

Corrosion is a major factor in the deterioration of reinforced concrete (RC) structures. To mitigate this problem, steel bars can be replaced with glass-fiber-reinforced-polymer (GFRP) bars. However, the lack of ductility of GFRP-RC elements has prevented their use in many structural applications, especially in seismic areas. Superelastic shape memory alloy (SMA) bars have been proposed to be used in seismic areas because of their self-centering characteristics. Also, they have the added advantage of being corrosion resistant. This paper examines the combined use of SMA and GFRP bars to achieve ductile self-centering and corrosion-free elements. The first challenge for such a …


Flexural Behaviour Of Superelastic Shape Memory Alloy Reinforced Concrete Beams During Loading And Unloading Stages, Yamen Ibrahim Elbahy, Maged Youssef Jan 2019

Flexural Behaviour Of Superelastic Shape Memory Alloy Reinforced Concrete Beams During Loading And Unloading Stages, Yamen Ibrahim Elbahy, Maged Youssef

Civil and Environmental Engineering Publications

Trend of using smart structures, which can adjust when exposed to severe unexpected loading, is increasing. One of the methods to achieve such structures relies on smart materials. For example, replacing conventional steel reinforcing bars in Reinforced Concrete (RC) structures with superelastic Shape Memory Alloy (SMA) bars significantly reduces the residual deformations caused by post-yielding behaviour. This paper provides in-depth understanding of the flexural behaviour of SMA RC beams. A sectional analysis method, which predicts the flexural behaviour of SMA RC beams during both loading and unloading stages, is adopted and validated using available experimental data. An extensive parametric study …