Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

A Comparison Of Contextual Bandit Approaches To Human-In-The-Loop Robot Task Completion With Infrequent Feedback, Matt Mcneill, Damian Lyons Nov 2019

A Comparison Of Contextual Bandit Approaches To Human-In-The-Loop Robot Task Completion With Infrequent Feedback, Matt Mcneill, Damian Lyons

Faculty Publications

Artificially intelligent assistive agents are playing an increased role in our work and homes. In contrast with currently predominant conversational agents, whose intelligence derives from dialogue trees and external modules, a fully autonomous domestic or workplace robot must carry out more complex reasoning. Such a robot must make good decisions as soon as possible, learn from experience, respond to feedback, and rely on feedback only as much as necessary. In this research, we narrow the focus of a hypothetical robot assistant to a room tidying task in a simulated domestic environment. Given an item, the robot chooses where to put …


An Application Of Sliding Mode Control To Model-Based Reinforcement Learning, Aaron Thomas Parisi Sep 2019

An Application Of Sliding Mode Control To Model-Based Reinforcement Learning, Aaron Thomas Parisi

Master's Theses

The state-of-art model-free reinforcement learning algorithms can generate admissible controls for complicated systems with no prior knowledge of the system dynamics, so long as sufficient (oftentimes millions) of samples are available from the environ- ment. On the other hand, model-based reinforcement learning approaches seek to leverage known optimal or robust control to reinforcement learning tasks by mod- elling the system dynamics and applying well established control algorithms to the system model. Sliding-mode controllers are robust to system disturbance and modelling errors, and have been widely used for high-order nonlinear system control. This thesis studies the application of sliding mode control …


Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman Jun 2019

Robot Navigation In Cluttered Environments With Deep Reinforcement Learning, Ryan Weideman

Master's Theses

The application of robotics in cluttered and dynamic environments provides a wealth of challenges. This thesis proposes a deep reinforcement learning based system that determines collision free navigation robot velocities directly from a sequence of depth images and a desired direction of travel. The system is designed such that a real robot could be placed in an unmapped, cluttered environment and be able to navigate in a desired direction with no prior knowledge. Deep Q-learning, coupled with the innovations of double Q-learning and dueling Q-networks, is applied. Two modifications of this architecture are presented to incorporate direction heading information that …


A Deep Recurrent Q Network Towards Self-Adapting Distributed Microservices Architecture (In Press), Basel Magableh Jan 2019

A Deep Recurrent Q Network Towards Self-Adapting Distributed Microservices Architecture (In Press), Basel Magableh

Articles

One desired aspect of microservices architecture is the ability to self-adapt its own architecture and behaviour in response to changes in the operational environment. To achieve the desired high levels of self-adaptability, this research implements the distributed microservices architectures model, as informed by the MAPE-K model. The proposed architecture employs a multi adaptation agents supported by a centralised controller, that can observe the environment and execute a suitable adaptation action. The adaptation planning is managed by a deep recurrent Q-network (DRQN). It is argued that such integration between DRQN and MDP agents in a MAPE-K model offers distributed microservice architecture …