Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Tracking Center Of Mass With Limited Inertial Measurement Units, Connor Nathaniel Morrow Sep 2019

Tracking Center Of Mass With Limited Inertial Measurement Units, Connor Nathaniel Morrow

Dissertations and Theses

Wearable motion tracking systems pose an opportunity to study and correct human balance and posture during movement. Currently, these observations are either being conducted in laboratories with the use of camera systems and markers placed on the body, or through the use of suits containing large numbers (15-20) of inertial measurement units. However, to aid with rehabilitation of individuals with impaired balance, there needs to be an option to collect these observations outside of clinics and without incurring much cost from the user. I have focused on three inertial measurement units, one placed on each shank and one placed on …


Simulated Tremor Propagation In The Upper Limb: From Muscle Activity To Joint Displacement, Thomas Corie, Steven Knight Charles Aug 2019

Simulated Tremor Propagation In The Upper Limb: From Muscle Activity To Joint Displacement, Thomas Corie, Steven Knight Charles

Faculty Publications

Although tremor is the most common movement disorder, there are few non-invasive treatment options. Creating effective tremor suppression devices requires a knowledge of where tremor originates mechanically (which muscles) and how it propagates through the limb (to which degrees of freedom, DOF).

To simulate tremor propagation, we created a simple model of the upper limb, with tremorogenic activity in the 15 major superficial muscles as inputs and tremulous joint displacement in the 7 major DOF as outputs. The model approximated the muscle excitation-contraction dynamics, musculoskeletal geometry, and mechanical impedance of the limb.

From our simulations, we determined fundamental principles for …


Biomechanics Of Lower Limb During The Golf Swing Using Opensim Modeling, Andrew B. Butler May 2019

Biomechanics Of Lower Limb During The Golf Swing Using Opensim Modeling, Andrew B. Butler

Theses and Dissertations

The purpose of this research is to investigate the biomechanics of the lower-limb using an inverse dynamics model. Experimental data, recorded by an integrated Motion Analysis – Force Plate System in the UTRGV Biomechanics Laboratory, is used to determine ground reaction forces and marker trajectories. OpenSim, a graphical musculoskeletal and computational platform, is used to model the body in three dimensions. The human body is modeled as a 12-segment linkage, consisting of 23 degrees-of-freedom and 92 muscles. The experimental data for the Biomechanics Laboratory is imported in OpenSim. Then, joint angles, generalized coordinates & accelerations of lower-limb segments, muscle forces, …


How Infant Positioning Impacts Hip Motion And The Associated Implications For Babies With Hip Dysplasia, Lauren Buchele May 2019

How Infant Positioning Impacts Hip Motion And The Associated Implications For Babies With Hip Dysplasia, Lauren Buchele

Biomedical Engineering Undergraduate Honors Theses

Developmental dysplasia of the hip (DDH) refers to a group of disorders, ranging from slight instability (Grades 1-3) to a severe dislocation (Grade 4) of the femoral head from the acetabulum [1]. In order to treat DDH in infants, a reduction procedure and the use of a lower body harness to secure the hip joint as the bones and ligaments re-form properly is typically prescribed. The Pavlik Harness is currently the “gold-standard” orthopedic device used to place hips in proper positioning. However, little research has been reported on the biomechanical affects during use of these device types.

Although the Pavlik …


Use Of Flexible Sensor To Characterize Biomechanics Of Canine Skin, Austin Downey, Jin Yan, Eric M. Zellner, Karl H. Kraus, Iris V. Rivero, Simon Laflamme Jan 2019

Use Of Flexible Sensor To Characterize Biomechanics Of Canine Skin, Austin Downey, Jin Yan, Eric M. Zellner, Karl H. Kraus, Iris V. Rivero, Simon Laflamme

Faculty Publications

Background Suture materials and techniques are frequently evaluated in ex vivo studies by comparing tensile strengths. However, the direct measurement techniques to obtain the tensile forces in canine skin are not available, and, therefore, the conditions suture lines undergo is unknown. A soft elastomeric capacitor is used to monitor deformation in the skin over time by sensing strain. This sensor was applied to a sample of canine skin to evaluate its capacity to sense strain in the sample while loaded in a dynamic material testing machine. The measured strain of the sensor was compared with the strain measured by the …


Analyzing Moment Arm Profiles In A Full-Muscle Rat Hindlimb Model, Fletcher Young, Christian Rode, Alexander Hunt, Roger Quinn Jan 2019

Analyzing Moment Arm Profiles In A Full-Muscle Rat Hindlimb Model, Fletcher Young, Christian Rode, Alexander Hunt, Roger Quinn

Mechanical and Materials Engineering Faculty Publications and Presentations

Understanding the kinematics of a hindlimb model is a fundamental aspect of modeling coordinated locomotion. This work describes the development process of a rat hindlimb model that contains a complete muscular system and incorporates physiological walking data to examine realistic muscle movements during a step cycle. Moment arm profiles for selected muscles are analyzed and presented as the first steps to calculating torque generation at hindlimb joints. A technique for calculating muscle moment arms from muscle attachment points in a three-dimensional (3D) space has been established. This model accounts for the configuration of adjacent joints, a critical aspect of biarticular …


A Reticulation Of Skin-Applied Strain Sensors For Motion Capture, Christopher A. Schroeck Jan 2019

A Reticulation Of Skin-Applied Strain Sensors For Motion Capture, Christopher A. Schroeck

ETD Archive

The purpose of this research is to develop a system of motion capture based on skin-applied strain sensors. These elastic sensors are of interest because they can be applied to the body without restricting motion and are well suited to operate in more practical environments, such as sports fields, gymnasiums, and outdoor areas. This combination is currently not available in the field of motion capture. The current issues with strain sensor motion capture technology is the accurate is not sufficient for motion analysis and axial rotation monitoring of joints is not available. This project will build and test a sensor …