Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel Jan 2019

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel

Nuclear Engineering ETDs

Renewed interest in molten salt reactor technology has brought to light the need for a better understanding of FLiBe corrosion. To this end a flowing FLiBe corrosion test loop was designed to test the flow effects of FLiBe corrosion. The loop consists of a pump, melt tank, and stainless-steel tubing assembly that heats the molten salt to high temperatures and circulates it over test specimens. The experiment has been constructed and has completed initial shakedown testing.

To support the flowing FLiBe experiment, a numerical corrosion model that couples FLiBe electrochemistry, solid metal diffusion, and mass transport was implemented. The model …


Controlled Release Of Corrosion Inhibitors: Zinc And Magnesium Containing Sodium Chromate, Andrew Thomas Jan 2019

Controlled Release Of Corrosion Inhibitors: Zinc And Magnesium Containing Sodium Chromate, Andrew Thomas

Williams Honors College, Honors Research Projects

Corrosion can be combated by multiple methods, where the primary purpose is to minimize degradation of metal surfaces. Corrosion inhibitors are one of the most effective methods of corrosion protection. Inhibitors are substances that minimize corrosion in aggressive environments, with only a low concentration required. The inhibitors are chemically adsorbed on the surface of the metal and a protective thin film is formed . The mechanism of the inhibitors could be described as anodic, cathodic, or a mix of the two. Anodic inhibitors, also known as passivation inhibitors, alter an anode reaction. Corrosion potential of the metal is shifted to …


Cataloging The Degree Of Sensitization Via Electrochemical Reactivation For Studying The Corrosion Behavior Of Inconel 718, Austenitic, And Duplex Stainless Steels, Bradley Lynes Jan 2019

Cataloging The Degree Of Sensitization Via Electrochemical Reactivation For Studying The Corrosion Behavior Of Inconel 718, Austenitic, And Duplex Stainless Steels, Bradley Lynes

Williams Honors College, Honors Research Projects

Corrosion resistant materials can be expensive, but usually reduce the life cycle cost of metallic assets. However, negligent sensitization of these materials can lead to aggressive, intergranular corrosion. Using the methodology of the double loop electrochemical potentiokinetic reactivation (DL-EPR), this project investigates different steel reinforced bars and Inconel to determine the degree of sensitization after a heat treatment of 900°C for 2 hours. The purpose of this research is to validate and determine the appropriate test parameters for performing further DL-EPR test in the future. Additionally, the kinetics observed for each sample during the DL-EPR test will be analyzed and …


Development Of Cardanol-Based Epoxy Coating, Nicholas Pottschmidt Jan 2019

Development Of Cardanol-Based Epoxy Coating, Nicholas Pottschmidt

Williams Honors College, Honors Research Projects

The purpose of this project was to determine the suitability of cardanol glycidyl ether (CGE) as a substitute for trimethylolpropane triglycidyl ether (TMPGE) as the reactive diluent in epoxy coatings. CGE may be a naturally-derived alternative to TMPGE, which is a commonly-used petroleum-derived reactive diluent. Epoxy coatings were formulated with CGE replacing increasing amounts of TMPGE in the formulation. Corrosion protection provided by the coatings was evaluated with electrochemical impedance spectroscopy (EIS). Mechanical properties of the coatings (hardness, flexibility, adhesion, and impact resistance) were evaluated with applicable ASTM standards.

EIS results revealed the coating formulated with only CGE had superior …