Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Biomedical Devices and Instrumentation

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 93

Full-Text Articles in Engineering

A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou Dec 2019

A Wearable Mechatronic Device For Hand Tremor Monitoring And Suppression: Development And Evaluation, Yue Zhou

Electronic Thesis and Dissertation Repository

Tremor, one of the most disabling symptoms of Parkinson's disease (PD), significantly affects the quality of life of the individuals who suffer from it. These people live with difficulties with fine motor tasks, such as eating and writing, and suffer from social embarrassment. Traditional medicines are often ineffective, and surgery is highly invasive and risky. The emergence of wearable technology facilitates an externally worn mechatronic tremor suppression device as a potential alternative approach for tremor management. However, no device has been developed for the suppression of finger tremor that has been validated on a human.

It has been reported in …


The Design And Development Of A Device To Assist In Boosting Patients, Taylor A. Rieckhoff Dec 2019

The Design And Development Of A Device To Assist In Boosting Patients, Taylor A. Rieckhoff

Masters Theses

A common task a nurse is required to perform is called boosting patients. Boosting a patient is defined as lifting or sliding a patient back up in the bed after having slid down (Mannheim, Zieve, & Conaway, 2017). The current method for boosting patients involves a minimum of two personnel and an 11-step process. The 11-step process requires the person to manually lift and pull the patient using an existing half sheet on the bed (Mannheim, Zieve, & Conaway, 2017). Patients who cannot move or support themselves are moved every two to six hours or upon request (Bihn, Rieckhoff, Burkman, …


Blood Glucose Predictor, Jessica Patterson Dec 2019

Blood Glucose Predictor, Jessica Patterson

Electrical Engineering

For my senior project, I perform data analysis using statistical methods to determine body metrics that correlate with blood glucose levels. Working with Dr. Tina Smilkstein, I take repeat measurements from 6 different volunteers to establish trends in bodily metric data. The data taken includes weight, body fat, pulse rate, VO2, blood glucose, blood pressure, hours slept, and quality of sleep. Using these values, I use the program MiniTab to view results.

A few examples of correlations with blood glucose found in this project are:

  • Systolic blood pressure for females had a regression line of 124.0 -0.3366*Blood Pressure. This indicates …


Quantitative Analysis Techniques For Assessing Organelle Organization And Dynamics In Individual Cells, Isaac Vargas Dec 2019

Quantitative Analysis Techniques For Assessing Organelle Organization And Dynamics In Individual Cells, Isaac Vargas

Graduate Theses and Dissertations

In biomedical optics and microscopy, the organization and morphology of organelles have been widely studied. In spite of novel imaging techniques, there is still a lack of quantitative tools to easily measure cellular characteristics from image data. Previous studies have explored multiple approaches to assess organelle organization and alignment, resulting in complicated and extensive algorithms that are both subject to multiple steps of image processing and influenced by non-cellular artifacts. In this thesis, a technique called the Modified Blanket Method (MBM) is introduced to quantify organelle organization through measurements of fractal dimension (FD) on a pixel-by-pixel basis. With the use …


Single-Cell Impedance Spectroscopy, David Paul Lange Dec 2019

Single-Cell Impedance Spectroscopy, David Paul Lange

Master's Theses

Impedance spectroscopy (IS) is an important tool for cell detection and characterization in medical and food safety applications. In this thesis, the Cal Poly Biofluidics Lab’s impedance spectroscopy system was re-evaluated and optimized for single-cell impedance spectroscopy. To evaluate the IS system, an impedance spectroscopy bioMEMS chip was fabricated in the Cal Poly Microfabcrication lab, software was developed to run IS experiments, and studies were run to validate the system. To explore IS optimization, Maxwell’s mixture theorem and the Schwartz-Christoffel transform were used to calculate an analytic impedance solution to the co-planar electrode system,a novel volume fraction to account for …


Fluid Shift And Fluid Resuscitation In Burn Patients With The Use Of Bio-Electrical Impedance Spectroscopy To Monitor Fluid Levels, Temitope D. Obielodan Nov 2019

Fluid Shift And Fluid Resuscitation In Burn Patients With The Use Of Bio-Electrical Impedance Spectroscopy To Monitor Fluid Levels, Temitope D. Obielodan

Honors College Theses

The purpose of this research is to explore the current methods of fluid resuscitation and other possible methods of measuring the body fluid levels of burn patients in order to fully understand the fluid increase patterns in the torso area. This will be done primarily by focusing on the concept of bio-electrical impedance spectroscopy to measure the fluid levels only in the human torso area. Three similar tests were carried out by measuring the resistance values after ingesting 500ml of water. This was repeated until a total of 1500ml of water was ingested. It was found that the resistance in …


Offset Electrodes For Enhanced Neural Recording In Microchannels, Iian Black Nov 2019

Offset Electrodes For Enhanced Neural Recording In Microchannels, Iian Black

FIU Electronic Theses and Dissertations

Microchannel electrodes have emerged in recent years as promising interfaces for recording signals in peripheral nerves. Unlike many technologies, microchannels maintain stable long-term connections and can record activity in individual or small groups of axons. Unfortunately, a traditional symmetrical mid-channel electrode configuration, designed to reduce noise artifacts, prevents microchannels from being used to distinguish between signals traveling in opposite directions. This is a profound limitation given that most nerves contain a mix of efferent and afferent axons and microchannels were initially conceived and later used as the basic building block in arrays designed to record bi-directional neural traffic in regenerated …


A Review Of Materials For Managing Bone Loss In Revision Total Knee Arthroplasty, Romina Shafaghi, Omar Rodriguez, Emil H. Schemitsch, Paul Zalzal, Stephen D. Waldman, Marcello Papini, Mark R. Towler Nov 2019

A Review Of Materials For Managing Bone Loss In Revision Total Knee Arthroplasty, Romina Shafaghi, Omar Rodriguez, Emil H. Schemitsch, Paul Zalzal, Stephen D. Waldman, Marcello Papini, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

In 2014–2015, 61,421 total knee arthroplasties (TKAs) were performed in Canada; an increase of about 20% over 2000–2001. Revision total knee arthroplasties (rTKAs) accounted for 6.8% of TKAs performed between 2014 and 2015, and this is estimated to grow another 12% by 2025. rTKAs are typically more complicated than primary TKAs due to the significant loss of femoral and tibial bone stock. The escalating demand and limitations associated with total knee arthroplasty and their revision drives the development of novel treatments. A variety of materials have been utilized to facilitate regeneration of healthy bone around the site of a knee …


Paper-Based Flexible Electrode Using Chemically-Modified Graphene And Functionalized Multiwalled Carbon Nanotube Composites For Electrophysiological Signal Sensing, Md Faruk Hossain, Jae Sang Heo, John Nelson, Insoo Kim Oct 2019

Paper-Based Flexible Electrode Using Chemically-Modified Graphene And Functionalized Multiwalled Carbon Nanotube Composites For Electrophysiological Signal Sensing, Md Faruk Hossain, Jae Sang Heo, John Nelson, Insoo Kim

Bioelectrics Publications

Flexible paper-based physiological sensor electrodes were developed using chemically-modified graphene (CG) and carboxylic-functionalized multiwalled carbon nanotube composites (f@MWCNTs). A solvothermal process with additional treatment was conducted to synthesize CG and f@MWCNTs to make CG-f@MWCNT composites. The composite was sonicated in an appropriate solvent to make a uniform suspension, and then it was drop cast on a nylon membrane in a vacuum filter. A number of batches (0%~35% f@MWCNTs) were prepared to investigate the performance of the physical characteristics. The 25% f@MWCNT-loaded composite showed the best adhesion on the paper substrate. The surface topography and chemical bonding of the proposed CG-f@MWCNT …


The Effect Of Tantalum Incorporation On The Physical And Chemical Properties Of Ternary Silicon–Calcium–Phosphorous Mesoporous Bioactive Glasses, Andrew Mendonca, Md Saidur Rahman, Adel Alhalawani, Omar Rodriguez, Reid C. Gallant, Heyu Ni, Owen M. Clarkin, Mark R. Towler Oct 2019

The Effect Of Tantalum Incorporation On The Physical And Chemical Properties Of Ternary Silicon–Calcium–Phosphorous Mesoporous Bioactive Glasses, Andrew Mendonca, Md Saidur Rahman, Adel Alhalawani, Omar Rodriguez, Reid C. Gallant, Heyu Ni, Owen M. Clarkin, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

Synthesis and characterization of the first mesoporous bioactive glasses (MBGs) containing tantalum are reported here, along with their potential application as hemostats. Silica MBGs were synthesized using with the molar composition of (80-x)% Si, 15% Ca, 5% P, and x% Ta. It was found that incorporation of >1 mol % Ta into the MBGs changes their physical and chemical properties. Increasing Ta content from 0 to 10 mol % causes a decrease in the surface area and pore volume of ~20 and ~35%, respectively. This is due to the increase in nonbridging oxygens and mismatch of thermal expansion coefficient which …


Measuring Collagen Arrangement And Its Relationship With Preterm Birth Using Mueller Matrix Polarimetry, Joseph James Chue-Sang Sep 2019

Measuring Collagen Arrangement And Its Relationship With Preterm Birth Using Mueller Matrix Polarimetry, Joseph James Chue-Sang

FIU Electronic Theses and Dissertations

Preterm birth (PTB) is defined as delivery prior to 37 weeks of gestation. It is the leading cause of infant death worldwide, responsible for infant neurological disorders, long-term cognitive impairment, as well as chronic health issues involving the auditory, visual, digestive, and respiratory systems. In expectant mothers, causes for PTB can include infection, inflammation, vascular disease, short intervals between pregnancies, multiple gestations and genetic factors. In the U.S., PTB occurs in over 11% of births and at an elevated 18.1% in Miami-Dade County, FL; while in the developing world the incidence of PB is over 15%. Early identification of at-risk …


Measurement Of Adhesion Of Sternal Wires To A Novel Bioactive Glass-Based Adhesive, Varinder Pal Singh Sidhu, Mark R. Towler, Marcello Papini Sep 2019

Measurement Of Adhesion Of Sternal Wires To A Novel Bioactive Glass-Based Adhesive, Varinder Pal Singh Sidhu, Mark R. Towler, Marcello Papini

Chemical and Biochemical Engineering Faculty Research & Creative Works

Stainless steel wires are the standard method for sternal closure because of their strength and rigidity, the simplicity of the process, and the short healing time that results from their application. Despite this, problems still exist with sternal stability due to micromotion between the two halves of the dissected and wired sternum. Recently, a novel glass-based adhesive was developed which, in cadaveric trials and in conjunction with wiring, was shown to restrict this micromotion. However, in order to avoid complications during resternotomy, the adhesive should adhere only to the bone and not the sternal wire. In this study, sternal wires …


Investigation Of Visual Perceptions In Parkinson's Disease And The Development Of Disease Monitoring Software, Matthew Bernardinis Aug 2019

Investigation Of Visual Perceptions In Parkinson's Disease And The Development Of Disease Monitoring Software, Matthew Bernardinis

Electronic Thesis and Dissertation Repository

Non-motor Parkinson’s Disease (PD) symptoms are substantial factors of PD arising throughout disease stages, yet their diagnosis and monitoring remain a challenge. Sensory abnormalities in PD occur across sensory systems and disease stages, contributing to disease-related impairments. However, the extent of symptoms is unknown, with inadequate monitoring and treatment options furthering disease management difficulties. The current work studies movement-independent visual perceptions of time, displacement and velocity in PD patients across disease stages using levodopa, deep brain stimulation (DBS), or no PD therapy. Perceptual tasks were conducted using a computer-generated graphical device designed with a focus on simplicity and flexibility. Perception …


Characterization Of Nano-Cellulose Based Composites For Biomedical Applications, Mitchell P. Chesley Aug 2019

Characterization Of Nano-Cellulose Based Composites For Biomedical Applications, Mitchell P. Chesley

Electronic Theses and Dissertations

The number of orthopedic surgeries performed globally has steadily increased over the past decade due to the standardization of procedures as well as technological advancements. During this time orthopedic devices have been composed predominantly of metals, such as Titanium, Vanadium, Molybdenum, and Stainless steel, as well as their alloys, due to the high strength and durability of these materials. However, metals may, in fact, be suboptimal for orthopedic devices. For example, metals exhibit Young’s modulus much greater than the surrounding bone, inducing localized stress-shielding promoting cortical atrophy, which can lead to osteoporosis. In recent years polymers have been successfully explored …


Quantifying The Outcomes Of A Virtual Reality (Vr)-Based Gamified Neck Rehabilitation, Shahan Salim Aug 2019

Quantifying The Outcomes Of A Virtual Reality (Vr)-Based Gamified Neck Rehabilitation, Shahan Salim

Electronic Thesis and Dissertation Repository

Neck pain is a major global public health concern and adds a significant financial burden to both the healthcare system as well as people suffering from it. Additionally, it presents measurement and evaluation challenges for clinicians as well as adherence challenges and treatment barriers for the patients. We have developed a virtual reality (VR)-based video game that can be used to capture outcomes that may aid in the assessment and treatment of neck pain. We investigated: (i) performance metrics of overall accuracy, accuracy based on movement difficulty, duration, and total envelope of movement; (ii) stability across sessions; (iii) accuracy across …


Bioactive Glass Fiber Fabrication Via A Combination Of Sol-Gel Process With Electro-Spinning Technique, Malvika Nagrath, Adel Alhalawani, Alireza Rahimnejad Yazdi, Mark R. Towler Aug 2019

Bioactive Glass Fiber Fabrication Via A Combination Of Sol-Gel Process With Electro-Spinning Technique, Malvika Nagrath, Adel Alhalawani, Alireza Rahimnejad Yazdi, Mark R. Towler

Chemical and Biochemical Engineering Faculty Research & Creative Works

No abstract provided.


Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons Aug 2019

Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons

Boise State University Theses and Dissertations

Outcomes of total knee arthroplasty (TKA) are dependent on surgical technique, patient variability, and implant design. Non-optimal design or alignment choices may result in undesirable contact mechanics and joint kinematics, including poor joint alignment, instability, and reduced range of motion. Implant design and surgical alignment are modifiable factors with potential to improve patient outcomes, and there is a need for robust implant designs that can accommodate patient variability. Our objective was to develop a statistical shape-function model (SFM) of a posterior stabilized implant knee to instantaneously predict output mechanics in an efficient manner. Finite element methods were combined with Latin …


Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan Aug 2019

Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan

Graduate Theses and Dissertations

In this work, a novel microfluidic pumping approach, redox-magnetohydrodynamics (R-MHD) has improved by materials and device optimization to use in lab-on-a-chip applications. In R-MHD, magnetic flux (B) and ionic current density (j) interacts to generate body force (FB) in between active electrodes, according to the equation FB = j×B. This unique fluid pumping approach is scalable, tunable, generates flat flow profile, and does not require any channels or valves. Pumping performance, such as speed scales with the ionic current density (j) and duration depends on the total charge (Q). The ionic current density (j) results from the conversion of electronic …


Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar Jul 2019

Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar

Mechanical Engineering Research Theses and Dissertations

Dielectric properties of biological cells are functions of cellular structure, content, state, and phenotype. Dielectric spectroscopy (DS) is a nondestructive method to characterize dielectric properties by measuring impedance data over a frequency range. This method has been widely used for various applications such as counting, sizing, and monitoring biological cells and particles. Recently, this method has been suggested to be utilized in various stages of the drug discovery process due to its low sample consumption and fast analysis time.

In this thesis, we have developed a lab-on-a-chip device that uses an electro-activated microwells array for capturing, making DS measurements on, …


Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin Jul 2019

Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin

Honors Projects

A 3D printed hand and arm prosthetic was created from the idea of adding bionic elements while keeping the cost low. It was designed based on existing models, desired functions, and materials available. A tilt sensor keeps the hand level, two motors move the wrist in two different directions, a limit switch signals the fingers to open and close, and another motor helps open and close the fingers. All sensors and motors were built on a circuit board, programmed using an Arduino, and powered by a battery. Other supporting materials include metal brackets, screws, guitar strings, elastic bands, small clamps, …


The Effect Of Radial Head Hemiarthroplasty Stem Fit On Radiocapitellar Contact Mechanics: Is Loose Fit Better Than Rigidly Fixed?, Jakub Szmit, Graham J.W. King, James A. Johnson, G. Daniel G. Langohr Jun 2019

The Effect Of Radial Head Hemiarthroplasty Stem Fit On Radiocapitellar Contact Mechanics: Is Loose Fit Better Than Rigidly Fixed?, Jakub Szmit, Graham J.W. King, James A. Johnson, G. Daniel G. Langohr

Western Research Forum

Background/Methods: Radial head hemiarthroplasty is commonly employed to manage comminuted displaced fractures. With regards to implant fixation, current designs vary with some prostheses aiming to achieve a tight 'fixed' fit, and others utilizing a smooth stem with an over reamed 'loose' fit. The purpose of the present study was to evaluate the effect of radial head hemiarthroplasty stem fit on radiocapitellar contact using a finite element model which simulated both fixed (size-for-size) and loose (1, 2 & 3mm over reamed) stem fits.

Hypothesis: It was hypothesized that a loose stem fit would improve radiocapitellar contact mechanics, with increased contact area …


Remote Navigation And Contact-Force Control Of Radiofrequency Ablation Catheters, Daniel Gelman Jun 2019

Remote Navigation And Contact-Force Control Of Radiofrequency Ablation Catheters, Daniel Gelman

Electronic Thesis and Dissertation Repository

Atrial fibrillation (AF), the most common and clinically significant heart rhythm disorder, is characterized by rapid and irregular electrical activity in the upper chambers resulting in abnormal contractions. Radiofrequency (RF) cardiac catheter ablation is a minimally invasive curative treatment that aims to electrically correct signal pathways inside the atria to restore normal sinus rhythm. Successful catheter ablation requires the complete and permanent elimination of arrhythmogenic signals by delivering transmural RF ablation lesions contiguously near and around key cardiac structures. These procedures are complex and technically challenging and, even when performed by the most skilled physician, nearly half of patients undergo …


Neurostimulator With Waveforms Inspired By Nature For Wearable Electro-Acupuncture, Jose Aquiles Parodi Amaya Jun 2019

Neurostimulator With Waveforms Inspired By Nature For Wearable Electro-Acupuncture, Jose Aquiles Parodi Amaya

LSU Doctoral Dissertations

The work presented here has 3 goals: establish the need for novel neurostimulation waveform solutions through a literature review, develop a neurostimulation pulse generator, and verify the operation of the device for neurostimulation applications.

The literature review discusses the importance of stimulation waveforms on the outcomes of neurostimulation, and proposes new directions for neurostimulation research that would help in improving the reproducibility and comparability between studies.

The pulse generator circuit is then described that generates signals inspired by the shape of excitatory or inhibitory post-synaptic potentials (EPSP, IPSP). The circuit analytical equations are presented, and the effects of the circuit …


Advanced Design And Fabrication Of Prosthetic And Medical Devices, Gaffar Gailani, Andy S. Zhang, Yu Wang, Sidi Berri Jun 2019

Advanced Design And Fabrication Of Prosthetic And Medical Devices, Gaffar Gailani, Andy S. Zhang, Yu Wang, Sidi Berri

Publications and Research

The department of Mechanical Engineering and Industrial Design Technology (MEIDT) at City Tech is seeking to strengthening the skills of its students in manufacturing and design to respond to the urgent needs of the manufacturing industry in general and the prosthetic and medical devices (P&MD) industry in particular to high-skilled engineers and technicians and to provide a national model for advanced technology education. Medical Devices will include: (a) Surgical and Medical Instruments; (b) Surgical Appliances and Supplies; and (c) Dental Equipment and Supplies. The educational merit of the project is that it motivates students to do engineering rather than studying …


Challenges Of Erau’S First Suborbital Flight Aboard Blue Origin’S New Shepard M7 For The Cell Research Experiment In Microgravity (Crexim), Pedro Llanos, Kristina Andrijauskaite, Vijay V. Duraisamy, Francisco F. Pastrana, Erik Seedhouse, Sathya Gangadharan, Leonid Bunegin, Mariel Rico Jun 2019

Challenges Of Erau’S First Suborbital Flight Aboard Blue Origin’S New Shepard M7 For The Cell Research Experiment In Microgravity (Crexim), Pedro Llanos, Kristina Andrijauskaite, Vijay V. Duraisamy, Francisco F. Pastrana, Erik Seedhouse, Sathya Gangadharan, Leonid Bunegin, Mariel Rico

Pedro J. Llanos (www.AstronauticsLlanos.com)

Cell Research Experiment In Microgravity (CRExIM) was launched aboard Blue Origin’s New Shepard suborbital vehicle on Tuesday, December 12, 2017, from the West Texas Launch Site in Van Horn, Texas. One of the aims of this science experiment was to assess the effects of microgravity on murine T-cells during suborbital flight. These cells were placed in a NanoLab with a data logger that sensed the acceleration, temperature, and relative humidity during preflight, flight, and postflight operations. Some discrepancies in sensor measurement were noticed, and these errors were attributed partly to the difference in sampling rates and partly to the different …


A Physical And Computational Reverse-Engineering Approach To Determine Dimensional Change And Its Relationship To Oxidation In Retrieved Orthopedic Implants, Josephine Kalshoven Jun 2019

A Physical And Computational Reverse-Engineering Approach To Determine Dimensional Change And Its Relationship To Oxidation In Retrieved Orthopedic Implants, Josephine Kalshoven

ENGS 88 Honors Thesis (AB Students)

Oxidation of the Ultra-High Molecular Weight Polyethylene (UHMWPE) tibial inserts of total knee arthroplasty devices is a major factor underlying multiple modes of failure for these devices, including delamination, wear, and fracture. Previous research has demonstrated that oxidation of UHMWPE is driven by a high concentration of free radicals in the polyethylene. However, even new devices created with undetectable amounts of free radicals are oxidizing in vivo. One theory is that, in the absence of residual free radicals, oxidation is facilitated by absorbed species (e.g. lipids, ROS) delivered or exacerbated by contact stress. However, no method exists to comprehensively …


Transmission Probability Of Embolic Debris Through The Aortic Arch And Daughter Vessels During A Transcatheter Aortic Valve Replacement Procedure, Jessica Lena Wirth Jun 2019

Transmission Probability Of Embolic Debris Through The Aortic Arch And Daughter Vessels During A Transcatheter Aortic Valve Replacement Procedure, Jessica Lena Wirth

Master's Theses

Cerebral ischemia leading to an ischemic stroke is a possible complication of a transcatheter aortic valve replacement (TAVR) procedure. This is because embolic debris can become dislodged and travel through the aortic arch, where they either continue to the descending aorta and join the systemic circulation or travel into the cerebral vasculature through the three daughter vessels that branch off the top of the aortic arch. These three vessels are the brachiocephalic artery, the left subclavian artery, and the left common carotid artery. These three vessels lead either directly or indirectly to the cerebral vasculature, where the diameter of vessels …


Cej Ankle Support Report, Christine Prothe, James Baldwin, Erik Espinoza Jun 2019

Cej Ankle Support Report, Christine Prothe, James Baldwin, Erik Espinoza

Biomedical Engineering

This document provides information about an ankle support device designed to allow for ankle dorsiflexion and plantar flexion. In this document the product’s specifications, objectives and expectations are outlined. Included in this document is background information, stage gate process, prototype design development and considerations, and qualification requirements.


House Calls Mobile Virtual Stethoscope, Abigail Lindquist, Abigael Donohue, Trey Nahhas Jun 2019

House Calls Mobile Virtual Stethoscope, Abigail Lindquist, Abigael Donohue, Trey Nahhas

Biomedical Engineering

The purpose of this scope of work is to outline the progress of the Virtual Stethoscope design and development project as sponsored by House Calls Mobile. This device looks to provide accessible at-home care for patients all over the country through the mobile phone stethoscope attachment. With the virtual stethoscope technology, patients will be able to perform high-quality, in-home observation of heart, stomach, and lung sounds to be transmitted to a physician in real time. Eliminating the need to travel to a doctor’s office encourages patients to perform more regular checkups, increasing their likelihood potentially of life-saving early diagnoses. This …


Sand Foot: A Prosthesis For Walking On Sand, Samantha A. Galicinao, John Dewing, Daniel Dugan Dotson, Christopher Urasaki Jun 2019

Sand Foot: A Prosthesis For Walking On Sand, Samantha A. Galicinao, John Dewing, Daniel Dugan Dotson, Christopher Urasaki

Biomedical Engineering

This critical design report describes the product development of a prosthesis for use on sand. Quality of Life Plus (QL+), a national non-profit organization aimed to develop prostheses for veterans and people with disabilities, introduced this project and its accompanying challenger, Sgt. Brady, to Cal Poly’s Interdisciplinary Senior Project class in September 2018. After consulting with Sgt. Brady and QL+ and performing extensive research, the Sand Foot team defined customer requirements and engineering specifications to meet these requirements. Comfortability, durability, and sandproof were key customer requirements. Several conceptual models were brainstormed and a final design was selected based on the …