Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti Nov 2017

Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti

Chemical and Biological Engineering ETDs

Iron-nitrogen-carbon based catalyst was used at the cathode of a microbial desalination cell (MDC) and compared with platinum (Pt) and activated carbon (AC) cathode. Fe-N-C catalyst was prepared using nicarbazin (NCB) as organic precursor by sacrificial support method (SSM). Rotating ring disk electrode (RRDE) experiments shows that Fe-NCB had higher electrocatalytic activity compared to AC and Pt. The utilization of Fe-NCB into the cathode improved substantially the performance output with initial maximum power density of 49±2 μWcm-2 in contrast to Pt and AC catalysts which have shown lower values of 34±1 μWcm-2 and 23.5±1.5 μWcm-2, respectively. …


Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash Jul 2017

Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash

Nanoscience and Microsystems ETDs

The behavior of charged interfaces formed in various systems like colloidal solution, fuel cells, battery, electro-deposition, catalysis is governed by the properties of electrical double layer(EDL). Civilized model with charge regulation boundary condition determined by thermodynamic equilibrium at the interface has been used to model electrical double layer and shows that size of the solvent plays a critical role in characterizing the properties of EDL using classical density functional theory.This thesis investigates the impact of ion size in electrolyte solutions on the electrical double layer formed at the interface using a similar model. It is found that ion size greatly …


Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont Jul 2017

Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont

Nanoscience and Microsystems ETDs

The world currently relies heavily on fossil fuels such as coal, oil, and natural gas for its energy. Fossil fuels are non-renewable, that is, they draw on finite resources that will eventually dwindle, becoming too expensive or too environmentally damaging to retrieve. One alternative source of energy are fuel cells, electrochemical devices that convert chemical energy to cleanly and efficiently produce electricity. They can be used in a wide range of applications, including transportation, stationary, portable and emergency power sources. Their development has been slowed by the high cost of PGM electrocatalysts needed at both electrodes as well as sluggish …


Activity Of Pgm-Free Electrocatalysts For Oxygen Reduction Reaction: Ph And Co-Catalysis Effects, Mario Santiago Rojas Carbonell 8148369 Apr 2017

Activity Of Pgm-Free Electrocatalysts For Oxygen Reduction Reaction: Ph And Co-Catalysis Effects, Mario Santiago Rojas Carbonell 8148369

Chemical and Biological Engineering ETDs

Fuel cells offer a source to the current and always increasing demand for electric power. But as any new technology, there are challenges that need to be addressed to render it feasible for the market place. One of this challenges is finding the appropriate materials to catalyze the oxygen reduction reaction (ORR) that occurs in the cathode. Oxygen is used as an oxidant in a significant portion of the fuel cells due to its readily availability and high reduction potential. Now, one the bottlenecks that stops the large-scale adoption is the expensive and rare metals that have been used as …


A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman Mar 2017

A Study Of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry – Nanostructure – Performance, Michael J. Workman

Nanoscience and Microsystems ETDs

Fuel cells have the potential to be a pollution-free, low-cost, and energy efficient alternative to the internal combustion engine for transportation and small-scale stationary power applications. The current state of fuel cell technology has already achieved two of these three lofty goals. The remaining barrier to wide-scale deployment is the high cost, which is primarily caused by dependence on large amounts of platinum to catalyze the energy conversion reactions. To overcome this barrier and facilitate the integration of fuel cells into mainstream applications, research into a new class of catalyst materials that do not require platinum is needed.

There has …