Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2013

PDF

Discipline
Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 9167

Full-Text Articles in Engineering

Hybrid Agent Based Simulation With Adaptive Learning Of Travel Mode Choices For University Commuters, Nagesh Shukla, Albert Munoz, Jun Ma, Nam Huynh Feb 2014

Hybrid Agent Based Simulation With Adaptive Learning Of Travel Mode Choices For University Commuters, Nagesh Shukla, Albert Munoz, Jun Ma, Nam Huynh

Albert Munoz

This paper presents a methodology for developing a hybrid agent-based micro-simulation model to capture the impacts of commuter travel mode choices on a University campus transport network. The proposed methodology involves: (i) developing realistic population of commuter agents (students and staff); (ii) assigning activity lists and travel mode choices to agents using machine learning method; and, (iii) traffic micro-simulation of the study area transport network. This furthers the understanding of current transport modal distributions, factors affecting the travel mode choice decisions, and, network performance through a number of hypothetical travel scenarios.


Numerical Modeling Of Infrared Thermography Techniques Via Ansys, Hayder Abdulnabi Thajeel Dec 2013

Numerical Modeling Of Infrared Thermography Techniques Via Ansys, Hayder Abdulnabi Thajeel

Masters Theses

"Several inspection techniques have been developed over years. Recently, infrared thermography (IRT) technology has become a widely accepted as a nondestructive inspection (NDI) technique for different fields and various applications as well. Infrared thermography stands as one of the most an attractive and a successful NDI technique that has ability to detect the object's surface/subsurface defects remotely based on observing and measuring the surface's emitted infrared heat radiation by using an infrared camera. The finite element modeling FEM ANSYS was successfully used for the modelling of several IRT techniques; such as Pulsed Thermography (PT) and Lock-in Thermography (LT) that can …


Enhanced Optical Bistability With Film-Coupled Plasmonic Nanocubes, Christos Argyropoulos, Cristian Ciraci, David R. Smith Dec 2013

Enhanced Optical Bistability With Film-Coupled Plasmonic Nanocubes, Christos Argyropoulos, Cristian Ciraci, David R. Smith

Department of Electrical and Computer Engineering: Faculty Publications

Colloidally synthesized nanocubes strongly coupled to conducting films hold great promise for enhancing different nonlinear optical processes. They exhibit a robust and sensitive scattering response that can be easily controlled by their geometrical and material parameters. Strong local field enhancement is generated at the gap regions between the nanocubes and the metallic film. We show that strong optical bistability and all-optical switching behavior can be obtained by loading these nanogaps with Kerr nonlinear materials. Relatively low input intensities are required to obtain these nonlinear effects. The proposed design can lead to efficient, low-power, and ultrafast all-optical memories and scattering nanoswitches.


Optical Properties Of Gallium-Doped Zinc Oxide-A Low-Loss Plasmonic Material: First-Principles Theory And Experiment, Jongbum Kim, Gururaj V. Naik, Alexander V. Gavrilenko, Krishnaveni Dondapati, Vladimir I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, Alexandra Boltasseva Dec 2013

Optical Properties Of Gallium-Doped Zinc Oxide-A Low-Loss Plasmonic Material: First-Principles Theory And Experiment, Jongbum Kim, Gururaj V. Naik, Alexander V. Gavrilenko, Krishnaveni Dondapati, Vladimir I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, Alexandra Boltasseva

Birck and NCN Publications

Searching for better materials for plasmonic and metamaterial applications is an inverse design problem where theoretical studies are necessary. Using basic models of impurity doping in semiconductors, transparent conducting oxides (TCOs) are identified as low-loss plasmonic materials in the near-infrared wavelength range. A more sophisticated theoretical study would help not only to improve the properties of TCOs but also to design further lower-loss materials. In this study, optical functions of one such TCO, gallium-doped zinc oxide (GZO), are studied both experimentally and by first-principles density-functional calculations. Pulsed-laser-deposited GZO films are studied by the x-ray diffraction and generalized spectroscopic ellipsometry. Theoretical …


Using Software-Based Decision Procedures To Control Instruction-Level Execution, William B. Kimball Dec 2013

Using Software-Based Decision Procedures To Control Instruction-Level Execution, William B. Kimball

AFIT Patents

An apparatus, method and program product are provided for securing a computer system. A digital signature of an application is checked, which is loaded into a memory of the computer system configured to contain memory pages. In response to finding a valid digital signature, memory pages containing instructions of the application are set as executable and memory pages other than those containing instructions of the application are set as non-executable. Instructions in executable memory pages are executed. Instructions in non-executable memory pages are prevented from being executed. A page fault is generated in response to an attempt to execute an …


Localized Corrosion Behavior Of Sensitized 304 Stainless Steel By Scanning Reference Electrode Technique, Chen-Qing Ye, Rong-Gang Hu, Rui-Qing Hou, Xiao-Ping Wang, Rong-Gui Du, Chang-Jian Lin Dec 2013

Localized Corrosion Behavior Of Sensitized 304 Stainless Steel By Scanning Reference Electrode Technique, Chen-Qing Ye, Rong-Gang Hu, Rui-Qing Hou, Xiao-Ping Wang, Rong-Gui Du, Chang-Jian Lin

Journal of Electrochemistry

Based on a home-built setup of scanning reference electrode technique, and combined with conventional electrochemical measurements, the localized corrosion behavior of sensitized 304 stainless steel (304ss) had been investigated in this work. The results showed that, the non-sensitized 304ss or 304ss sensitized at 550 oC was susceptible to pitting; while 304ss sensitized at 650 oC or 750 oC suffered severe intergranular corrosion in 10% FeCl3 solution.


Study On Hydrogen Bubble Template Fabrication Of Porous Biomaterials Coatings By Electrochemically Induced Deposition, Hui Wang, Chang-Jian Lin, Ren Hu, Ke-Qin Zhang, Hong-Ping Duan, Xiang Dong Dec 2013

Study On Hydrogen Bubble Template Fabrication Of Porous Biomaterials Coatings By Electrochemically Induced Deposition, Hui Wang, Chang-Jian Lin, Ren Hu, Ke-Qin Zhang, Hong-Ping Duan, Xiang Dong

Journal of Electrochemistry

So far, the pore architecture in biomaterials plays a critical role on the cell response and integration between the biomaterials and implanted environment. In this study, porous calcium phosphate (CaP) coatings and CaP/protein composite coatings have been successfully constructed on titanium substrate by using an electrochemically induced deposition technique. The shape, size and pliability of CaP crystals are controlled by electrolyte concentration, temperature, current density, time and protein additive in preparing process. In addition, the formation mechanism of the porous structure is discussed based on the “hydrogen bubble template” model. It demonstrates that the growth velocity of CaP crystals should …


Cmk-3/Sulfur Composite (CXSY) And Room-Temperature Na/S Battery, Qing Zhao, Yu-Xiang Hu, Kai Zhang, Li-Jiang Wang, Zhan-Liang Tao, Jun Chen Dec 2013

Cmk-3/Sulfur Composite (CXSY) And Room-Temperature Na/S Battery, Qing Zhao, Yu-Xiang Hu, Kai Zhang, Li-Jiang Wang, Zhan-Liang Tao, Jun Chen

Journal of Electrochemistry

A series of ordered mesoporous carbon (CMK-3)/sulfur composite (CxSy) with different sulfur contents were synthesized via a melt-diffusion method. XRD, Raman, BET, SEM, and TEM techniques were used to characterize the structure and morphology of the as-prepared composite. The electrochemical performance of CMK-3/sulfur composite as the electrode of Na/S battery was tested at room temperature. Cyclic voltammograms show that one obvious reduction peak was located at about 1.61V, which is corresponding to the formation of Na2Sx (x=2~5), while two oxidation peaks were displayed at about 1.82V and 1.95V, which are belonging to the …


Surface Composition Structure And Electrochemical Performance Of Aluminum Doped Lifepo4, Huai-Fang Shang, Wei-Feng Huang, Wang-Sheng Hu, Ding-Guo Xia, Zi-Yu Wu Dec 2013

Surface Composition Structure And Electrochemical Performance Of Aluminum Doped Lifepo4, Huai-Fang Shang, Wei-Feng Huang, Wang-Sheng Hu, Ding-Guo Xia, Zi-Yu Wu

Journal of Electrochemistry

Despite there are many successful reports about the preparation of electrode materials with surface coating for lithium ion batteries, the study in surface self-coating of cathode materials using segregation of doping elements and their electrochemical properties is still very rare. The LiFePO4 particles with rich-Al on the surface were synthesized by one step solvothermal route. TEM results demonstrated that the surface of the obtained LiFePO4 particles was well-covered by the amorphous coating. The soft X-ray absorption spectroscopy (XAS) and Auger electron spectroscopy (AES) component analyses revealed that the amorphous coating was composed of LiFe1-xAlxPO …


Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li Dec 2013

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li

Journal of Electrochemistry

Dispersed spherical Fe3O4 nanoparticles were synthesized by a hydrothermal method. The influences of odecyl trimethyl ammonium bromide (DTAB) concentration on the morphology and particle size of the as-prepared Fe3O4 were studied. Electrochemical performance of the as-prepared sample as anode materials of lithium ion battery was investigated. It is found that the as-prepared sample exhibits superior rate performance and cycle performance. The nano-sized materials provide structural stability and favor the transfer of lithium ions.


Electrochemical Na-Storage Materials And Their Applications For Na-Ion Batteries, Jiang-Feng Qian, Xue-Ping Gao, Han-Xi Yang Dec 2013

Electrochemical Na-Storage Materials And Their Applications For Na-Ion Batteries, Jiang-Feng Qian, Xue-Ping Gao, Han-Xi Yang

Journal of Electrochemistry

Oncoming large scale electric energy storage (EES) requires battery systems not only to have sufficient storage capacity but also to be cost-effective and environmentally friendly. Li-ion batteries for widespread EES applications may be limited due to the constraint of global lithium resource. From the considerations of available resources and environmental impact, Na-ion batteries have potential advantages as next generation secondary batteries and an alternative to Li-ion batteries. However, in the present state of the art, the Na-storage cathodes reported so far are still deficient both in energy density and power capability, while the carbon and alloy anodes for Na-ion batteries …


Application Of Synchrotron Radiation Based Electrochemical In-Situ Techniques To Study Of Electrode Materials For Lithium-Ion Batteries, Zheng-Liang Gong, Wei Zhang, Dong-Ping Lv, Xiao-Gang Hao, Wen Wen, Zheng Jiang, Yong Yang Dec 2013

Application Of Synchrotron Radiation Based Electrochemical In-Situ Techniques To Study Of Electrode Materials For Lithium-Ion Batteries, Zheng-Liang Gong, Wei Zhang, Dong-Ping Lv, Xiao-Gang Hao, Wen Wen, Zheng Jiang, Yong Yang

Journal of Electrochemistry

Due to its merits of high brightness and high intensity, high level of polarization and wide tunability in energy, etc., synchrotron radiation technique provides an unique platform for analysis of the relationship among composition–structure–performance of materials for lithium ion batteries, especially for in-situ, real time dynamic investigation of the electrochemical reaction mechanism, aging process and failure mechanism during charge-discharge cycling. In this paper, we review the latest developments in application of synchrotron based electrochemical in-situ experimental methods to studies of lithium ion batteries. The paper mainly focuses on the application of electrochemical in-siu XRD and XAFS techniques to the investigations …


Preparation And Electrochemical Properties Of Amorphous Znsno3/C By Hydrothermally Carbonization Method, Guo-Qing Fang, Rui-Xue Zhang, Wei-Wei Liu, Bing-Bo Xia, Hong-Dan Sun, Hai-Bo Wang, Jing-Jing Wu, Shinko Kaneko, De-Cheng Li Dec 2013

Preparation And Electrochemical Properties Of Amorphous Znsno3/C By Hydrothermally Carbonization Method, Guo-Qing Fang, Rui-Xue Zhang, Wei-Wei Liu, Bing-Bo Xia, Hong-Dan Sun, Hai-Bo Wang, Jing-Jing Wu, Shinko Kaneko, De-Cheng Li

Journal of Electrochemistry

The amorphous ZnSnO3@C composite was synthesized via a simple glucose hydrothermal and subsequent carbonization approach. The structure, morphology and electrochemical property of the composite were characterized by XRD, TEM and electrochemical measurements. Compared to bare ZnSnO3, the ZnSnO3/C composite exhibited markedly enhanced lithium storage property and cycle performance, delivering a reversible capacity of 659 mAh·g-1 after 100 cycles at a current density of 100 mA·g-1.


An Investigation On The Solid Electrolyte Interphase Of Silicon Anode For Li-Ion Batteries Through Force Curve Method, Jie-Yun Zheng, Hao Zheng, Rui Wang, Hong Li, Li-Quan Chen Dec 2013

An Investigation On The Solid Electrolyte Interphase Of Silicon Anode For Li-Ion Batteries Through Force Curve Method, Jie-Yun Zheng, Hao Zheng, Rui Wang, Hong Li, Li-Quan Chen

Journal of Electrochemistry

Non-aqueous electrolyte has been widely used in commercial Li-ion batteries. Optimized choices are proceeding among the various types of salts and solvents in an effort to achieve higher performance of electrolyte. However, the electrolyte will be reduced in low potential and the reductive product will be deposited on the surface of anode to form a passivating layer, solid electrolyte interphase (SEI). Herein an atomic force microscopy (AFM) based method was introduced to study the structure and mechanical property of SEI on silicon thin film anode during the first cycle. Silicon has been known as the most potential candidate anode for …


Aqueous Solution-Evaporation Route Synthesis And Phase Structural Research Of The Li-Rich Cathode Li1.23Ni0.09Co0.12Mn0.56O2 By In-Situ Xrd, Chong-Heng Shen, Shou-Yu Shen, Zhou Lin, Xiao-Mei Zheng, Hang Su, Ling Huang, Jun-Tao Li, Shi-Gang Sun Dec 2013

Aqueous Solution-Evaporation Route Synthesis And Phase Structural Research Of The Li-Rich Cathode Li1.23Ni0.09Co0.12Mn0.56O2 By In-Situ Xrd, Chong-Heng Shen, Shou-Yu Shen, Zhou Lin, Xiao-Mei Zheng, Hang Su, Ling Huang, Jun-Tao Li, Shi-Gang Sun

Journal of Electrochemistry

The Li-rich Li1.23Ni0.09Co0.12Mn0.56O2 material was synthesized via aqueous solution-evaporation route. The structure and morphology of the material were characterized by means of XRD and SEM. The results indicated that the single particle of the product was polygonal with the size of 330 nm and the structure was layered solid solution with a certain amount of Li2MnO3. Electrochemical tests showed that the first discharge capacity of the Li-rich layered material was 250.8 mAh·g-1 at 0.1C,the capacity retention was 86.5% after 40 cycles. Through in-situ XRD study a …


Synthesis And Electrochemical Property Of Li2Fesio4/C Cathode Material By Solid State Method, Jiao-Li Sun, Zhi-Jiao Chen, Yi-Xiao Li, Hu Cheng Dec 2013

Synthesis And Electrochemical Property Of Li2Fesio4/C Cathode Material By Solid State Method, Jiao-Li Sun, Zhi-Jiao Chen, Yi-Xiao Li, Hu Cheng

Journal of Electrochemistry

Li2FeSiO4/C cathode material was synthesized using Li2SiO3 and FeC2O4 as raw materials by solid state method. The structure and morphology of the material were characterized by XRD and SEM. The electrochemical properties of the material were studied by constant-current cyclic testing. The results show that Li2FeSiO4/C has a good electrochemical performance. The first discharge capacity of Li2FeSiO4/C cathode material at 30oC reached 167 mAhg-1 when cycled at 10 mAg-1 between 1.5 and 4.8 V.


Preparation And Electrochemical Properties Of Flake-Like Liv3O8 By Soft Template Assisted Sol-Gel Method As Anode Material For Aqueous Li-Ion Battery, Shuai Tan, Dan Sun, Hai-Yan Wang, Tian-Li Hou, Zhong-Xing Xiao, You-Gen Tang Dec 2013

Preparation And Electrochemical Properties Of Flake-Like Liv3O8 By Soft Template Assisted Sol-Gel Method As Anode Material For Aqueous Li-Ion Battery, Shuai Tan, Dan Sun, Hai-Yan Wang, Tian-Li Hou, Zhong-Xing Xiao, You-Gen Tang

Journal of Electrochemistry

Anode material has become the key issue for restricting the development of aqueous lithium ion battery (ALIB). Flake-like LiV3O8 materials were synthesized by sol-gel method using sodium dodecyl benzene sulfonate (SDBS) as a template. The XRD and SEM results showed that as-prepared flake-like LiV3O8 was of high purity with monoclinic system and P21/m space group. LiMn2O4//Li2SO4//LiV3O8 ALIB was assembled and tested. As observed, the flake-like LiV3O8 here exhibited good high-rate performance and cycling stability. A high discharge capacity of 154 mAh.g-1 (based on the mass …


Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun Dec 2013

Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun

Journal of Electrochemistry

High potential LiCoPO4 cathode material was synthesized by polyol method. Carbon layer of ca. 3 nm thick was coated on the LiCoPO4 surfaces by chemical vapor deposition from methylbenzene. Crystalline structure, morphology and electrochemical performance of the sample were studied by XRD, SEM, TEM, CV and galvanostatic charge/discharge curve. The synthesized material via polyol method showed a pure phase of LiCoPO4. The LiCoPO4/C electrode delivered a high discharge capacity of 132 mAh·g-1 and maintained 78% of the initial capacity after 50 cycles at 0.1C rate. The two-step extraction/insertion behavior of Li+ in LiCoPO4/C …


Preparation Of The Particle Size Controllable Lifepo4/C And Its Electrochemical Profile Characterization, Ming-E Wang, Jing-Yuan Liu, Meng-Yan Hou, Yong-Yao Xia Dec 2013

Preparation Of The Particle Size Controllable Lifepo4/C And Its Electrochemical Profile Characterization, Ming-E Wang, Jing-Yuan Liu, Meng-Yan Hou, Yong-Yao Xia

Journal of Electrochemistry

We adopted an effective route to prepare the particle size controllable core-shell structure carbon-coated LiFePO4 from different sized FePO4 precursors, varying from 80 nm, 200 nm and 1 μm by an in situ polymerization method integrated with a surface modification technology. The discharge capacities of the three sized LiFePO4/C are, respectively, 162 mAh·g-1, 142 mAh·g-1 and 92 mAh·g-1 at 0.1C rate. The nano-sized LiFePO4-a/C (80 nm) delivers a discharge capacity as large as 100 mAh·g-1 even at 30C, while the macroscopic LiFePO4-c/C (1 μm) exhibits a much poorer discharge …


P&O, Arezoo Eshraghi Dec 2013

P&O, Arezoo Eshraghi

AREZOO ESHRAGHI

No abstract provided.


Systems Metabolic Engineering Of Microbial Cell Factories For The Synthesis Of Value-Added Chemicals, Arul Mozhy Varman Dec 2013

Systems Metabolic Engineering Of Microbial Cell Factories For The Synthesis Of Value-Added Chemicals, Arul Mozhy Varman

All Theses and Dissertations (ETDs)

Microbial cell factories offer us an excellent opportunity for the conversion of many different cheaply available raw materials into valuable chemicals. Systems metabolic engineering aims at developing rational strategies for the engineering of microbial hosts by providing global level information of a cell. This dissertation focuses on metabolic engineering, bioprocess modeling and pathway analysis, to develop robust microbial cell factories for the synthesis of value-added chemicals. The following research tasks were completed in this regard.

First, statistical models were developed for the prediction of product yields in engineered microbial cell factories - Saccharomyces cerevisiae and Escherichia coli: Chapter 2). A …


Mems Cantilever Sensor For Thz Photoacoustic Chemical Sensing And Spectroscopy, Nathan E. Glauvitz Dec 2013

Mems Cantilever Sensor For Thz Photoacoustic Chemical Sensing And Spectroscopy, Nathan E. Glauvitz

Theses and Dissertations

Sensitive Microelectromechanical System (MEMS) cantilever designs were modeled, fabricated, and tested to measure the photoacoustic (PA) response of gasses to terahertz (THz) radiation. Surface and bulk micromachining technologies were employed to create the extremely sensitive devices that could detect very small changes in pressure. Fabricated devices were then tested in a custom made THz PA vacuum test chamber where the cantilever deflections caused by the photoacoustic effect were measured with a laser interferometer and iris beam clipped methods. The sensitive cantilever designs achieved a normalized noise equivalent absorption coefficient of 2.83x10-10 cm-1 W Hz-1/2 using a 25 …


کارگاه اصول نگارش مقالات علمی 1, Dr Alireza Zolfaghari Dec 2013

کارگاه اصول نگارش مقالات علمی 1, Dr Alireza Zolfaghari

Dr Alireza Zolfaghari

No abstract provided.


Impact Of Wind Generator Control Strategies On Flicker Emission In Distribution Networks, Lasantha Meegahapola, Sarath Perera Dec 2013

Impact Of Wind Generator Control Strategies On Flicker Emission In Distribution Networks, Lasantha Meegahapola, Sarath Perera

Dr Lasantha G Meegahapola

Renewable power generators are increasingly being integrated to electricity networks to achieve future renewable energy targets in power generation. In particular, wind power generation has already reported substantial penetration levels in electricity networks. Traditionally, flicker phenomenon is considered to be one of the power quality issues in power distribution networks due to fluctuating consumer loads connected to the network. Large-scale integration of wind power generators may create significant voltage fluctuations in distribution feeders due to stochastic and intermittent nature of the wind resources. This study aims to investigate and characterize the flicker emission under different control strategies for DFIG based …


Characterisation Of Flicker Emission And Propagation In Distribution Networks With Bi-Directional Power Flows, D Perera, L Meegahapola, S Perera, P Ciufo Dec 2013

Characterisation Of Flicker Emission And Propagation In Distribution Networks With Bi-Directional Power Flows, D Perera, L Meegahapola, S Perera, P Ciufo

Dr Lasantha G Meegahapola

With the increasing penetration levels of intermittent and fluctuating energy sources such as wind generating systems in the electricity grid, resulting voltage fluctuations and flicker can be expected to become an important power quality considerations. Due to significant bidirectional power flows resulting from large renewable power generation systems connected to downstream, voltage fluctuations may propagate from downstream to upstream. The work presented in this paper investigates and characterises flicker emission and propagation resulting from fluctuating generating sources connected to a distribution network. Mathematical models are developed for flicker emission under different generator control strategies and flicker propagation to upstream network. …


Comparative Analysis Of Dynamic Line Rating Models And Feasibility To Minimise Energy Losses In Wind Rich Power Networks, Mathew Simms, Lasantha Meegahapola Dec 2013

Comparative Analysis Of Dynamic Line Rating Models And Feasibility To Minimise Energy Losses In Wind Rich Power Networks, Mathew Simms, Lasantha Meegahapola

Dr Lasantha G Meegahapola

Wind power generation has indicated an exponential increase during last two decades and existing transmission network infrastructure is increasingly becoming inadequate to transmit remotely generated wind power to load centres in the network. The dynamic line rating (DLR) is one of the viable solutions to improve the transmission line ampacity during high wind penetration without investing on an additional transmission network. The main objective of this study is to identify the basic differences between two main line rating standards, since transmission network service providers (TNSPs) heavily depend on these two standards when developing their line rating models. Therefore, a parameter …


Flicker Mitigation Strategy For Dfigs During Variable Wind Conditions, Lasantha Meegahapola, Brendan Fox, Damian Flynn Dec 2013

Flicker Mitigation Strategy For Dfigs During Variable Wind Conditions, Lasantha Meegahapola, Brendan Fox, Damian Flynn

Dr Lasantha G Meegahapola

This paper presents a flicker mitigation scheme for the doubly-fed induction generator (DFIG) during variable wind conditions. The flicker mitigation strategy was developed based on the distribution line X/R ratio and the active power deviation from the average active power during variable wind conditions. Flicker emission was analyzed using a flicker meter based on the IEC standards. Both short-term and long-term flicker severities were analyzed during the time period of study. The flicker mitigation strategy was evaluated under different system conditions such as X/R ratio, distribution line length, shortcircuit capacity (SCC), and wind variability. It is shown that the proposed …


Multi-Objective Reactive Power Support From Wind Farms For Network Performance Enhancement, Lasantha Meegahapola, Brendan Fox, Tim Littler, Damian Flynn Dec 2013

Multi-Objective Reactive Power Support From Wind Farms For Network Performance Enhancement, Lasantha Meegahapola, Brendan Fox, Tim Littler, Damian Flynn

Dr Lasantha G Meegahapola

This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive …


Voltage Security Constrained Reactive Power Optimization Incorporating Wind Generation, L G. Meegahapola, E Vittal, A Keane, D Flynn Dec 2013

Voltage Security Constrained Reactive Power Optimization Incorporating Wind Generation, L G. Meegahapola, E Vittal, A Keane, D Flynn

Dr Lasantha G Meegahapola

This paper presents a comparative analysis between conventional optimal power flow (OPF) and voltage constrained OPF strategies with wind generation. The study has been performed using the New England 39 bus system with 12 doublyfed induction generator (DFIG) based wind farms installed across the network. A voltage security assessment is carried out to determine the critical wind farms for voltage stability enhancement. The power losses and individual wind farm reactive power generation have been compared with and without voltage stability constraints imposed on the OPF simulation. It is shown that voltage constrained OPF leads to much greater active power losses …


Dynamic Characteristics Of A Hybrid Microgrid With Inverter And Non- Inverter Interfaced Renewable Energy Sources: A Case Study, A V. Jayawardena, L G. Meegahapola, S Perera, D A. Robinson Dec 2013

Dynamic Characteristics Of A Hybrid Microgrid With Inverter And Non- Inverter Interfaced Renewable Energy Sources: A Case Study, A V. Jayawardena, L G. Meegahapola, S Perera, D A. Robinson

Dr Lasantha G Meegahapola

Microgrids are becoming important constituents of electric power distribution networks. Microgrids are typically comprised of both inverter interfaced (e.g. double-fed induction generator (DFIG), solar-photovoltaic (PV) system) and non-inverter interfaced (e.g. synchronous generator) renewable energy generators (REGs), hence their dynamic characteristics are significantly different from the conventional grids comprised of centralised synchronous generators. Different inherent characteristics of REGs, power dispatch levels, relative REG capacities, and external grid characteristics are some of the important features of significant interest in relation to microgrid dynamic behaviour. For this study a microgrid model was developed in DIgSILENT Power Factory based on the IEEE-13 bus system …