Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Design Of A Three-Passage Low Reynolds Number Turbine Cascade With Periodic Flow Conditions, Daniel R. Rogers Nov 2008

Design Of A Three-Passage Low Reynolds Number Turbine Cascade With Periodic Flow Conditions, Daniel R. Rogers

Theses and Dissertations

A numerical method for modeling a low Reynolds number turbine blade, the L1M, is presented along with the pitfalls encountered. A laminar solution was confirmed to not accurately predict the flow features known in low Reynolds number turbine blade flow. Three fully turbulent models were then used to try to predict the separation and reattachment of the flow. These models were also found to be insufficient for transitioning flows. A domain was created to manually trip the laminar flow to turbulent flow using a predictive turbulence transition model. The trip in the domain introduced an instability in the flow field …


Multi-Functional, Self-Sensing And Automated Real-Time Non-Contact Liquid Dispensing System, Qiong Shen Aug 2008

Multi-Functional, Self-Sensing And Automated Real-Time Non-Contact Liquid Dispensing System, Qiong Shen

Dissertations

Liquid dispensing in the order of pico-liter has become more and more important in biology, electronics and micro-electronic-mechanical-system (MEMS) during the past two decades due to the rapid progress of researches on the deoxyribonucleic acid (DNA) microarray, compact and low-cost direct write technology (DWT), organic semiconductors and nano-particles.

The existing approaches, commercialized or experimental, to liquid dispensing in minute amounts have one common shortcoming: open loop control, i.e., they have no direct control on the quality of dispensed liquid. In contrast, the SmartPin has intrinsic self-sensing capability to not only control the process of liquid dispensing, but also the results …


Numerical Prediction And Wind Tunnel Experiment For A Pitching Unmanned Combat Air Vehicle, Russell M. Cummings, Scott A. Morton, Stefan G. Siegel Jul 2008

Numerical Prediction And Wind Tunnel Experiment For A Pitching Unmanned Combat Air Vehicle, Russell M. Cummings, Scott A. Morton, Stefan G. Siegel

Aerospace Engineering

The low-speed flowfield for a generic unmanned combat air vehicle (UCAV) is investigated both experimentally and numerically. A wind tunnel experiment was conducted with the Boeing 1301 UCAV at a variety of angles of attack up to 70 degrees, both statically and with various frequencies of pitch oscillation (0.5, 1.0, and 2.0 Hz). In addition, pitching was performed about three longitudinal locations on the configuration (the nose, 35% MAC, and the tail). Solutions to the unsteady, laminar, compressible Navier–Stokes equations were obtained on an unstructured mesh to match results from the static and dynamic experiments. The computational results are compared …


Parametric Optimization Design System For A Fluid Domain Assembly, Matthew Jackson Fisher Apr 2008

Parametric Optimization Design System For A Fluid Domain Assembly, Matthew Jackson Fisher

Theses and Dissertations

Automated solid modeling, integrated with computational fluid dynamics (CFD) and optimization of a 3D jet turbine engine has never been accomplished. This is due mainly to the computational power required, and the lack of associative parametric modeling tools and techniques necessary to adjust and optimize the design. As an example, the fluid domain of a simple household fan with three blades may contain 500,000 elements per blade passage. Therefore, a complete turbine engine that includes many stages, with sets of thirty or more blades each, will have hundreds of millions of elements. The fluid domains associated with each blade creates …


Development Of A Three Dimensional Prolapse Model To Simulate Physiological Haemodynamics In A Stented Coronary Artery, Jonathan Murphy, Fergal Boyle Feb 2008

Development Of A Three Dimensional Prolapse Model To Simulate Physiological Haemodynamics In A Stented Coronary Artery, Jonathan Murphy, Fergal Boyle

Conference Papers

Coronary stent implantation can improve blood flow in an artery that has been narrowed by the build up of arterial plaque. However, the haemodynamic effect of stent placement is unclear and may influence arterial restenosis (re-blockage). The degree of tissue prolapse between stent struts may be an important factor in predicting the restenosis rate of a stent due to the haemodynamic influence of the protruding tissue. In this paper a mathematical model has been developed to numerically predict the tissue prolapse for an artery implanted with a coronary stent. The prolapse model has been applied to the Gianturco-Roubin II (GR-II) …


Modeling Of Dispersed Phase By Lagrangian Approach In Fluent - 2d Exercise, Kari Myöhänen Jan 2008

Modeling Of Dispersed Phase By Lagrangian Approach In Fluent - 2d Exercise, Kari Myöhänen

Kari Myöhänen

This shows an example calculation applying DPM model in Fluent. This is related to the other DPM presentation and was prepared for the course 'Theory and simulation of dispersed-phase multiphase flows" by Dr. Payman Jalali, Lappeenranta University of Technology.


Modeling Of Dispersed Phase By Lagrangian Approach In Fluent, Kari Myöhänen Jan 2008

Modeling Of Dispersed Phase By Lagrangian Approach In Fluent, Kari Myöhänen

Kari Myöhänen

This is a seminar work prepared for a course 'Theory and simulation of dispersed-phase multiphase flows' by Dr. Payman Jalali, Lappeenranta University of Technology