Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

The Effects Of Patch Properties On The Debonding Behavior Of Patched Beam-Plates, Anette M. Karlsson Oct 2000

The Effects Of Patch Properties On The Debonding Behavior Of Patched Beam-Plates, Anette M. Karlsson

Mechanical Engineering Faculty Publications

The debonding characteristics of patched structures are investigated in this study by means of an analytical model. In particular, the effects the lay-up sequence and edge tapering of a carbon-reinforced epoxy patch, as well as the beveling of an aluminum patch, have on the initiation, stability, and extent of the debonding are considered. The results presented show that both the degree of edge-tapering and the patch properties must be carefully selected in order to optimize the patched structure. It is also shown that when designing a patched system, it is important to model the correct boundary and load conditions to …


Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller Mar 2000

Mechanics Of A Functionally-Graded Titanium Matrix Composite, G. Brandt Miller

Theses and Dissertations

Functionally-graded Titanium Matrix Composites, (F/G TMCs) combine the ideal properties of titanium matrix composites with the more practical machining qualities of monolithic (unreinforced) alloy. This material shows great promise in application to aerospace structural components - even in parts whose design requirements have defied the use of composite materials in the past. Successful implementation of such a material would lead to enhanced aircraft performance. However, the basic properties of a functionally-graded titanium matrix composite need to be investigated. The composite/alloy transition region, or joint area, may be less strong than its constituents and therefore determine the overall performance of the …


Evaluating The Durability Of Wood/Frp Bonds Through Chemical Kinetics Using A Range Of Mechanical Test Methods, Jonathan Philip Alexander Jan 2000

Evaluating The Durability Of Wood/Frp Bonds Through Chemical Kinetics Using A Range Of Mechanical Test Methods, Jonathan Philip Alexander

Electronic Theses and Dissertations

Hybrid composites of wood and fiber reinforced polymers (FRP) exhibit a flexibility of design properties through choices in fiber type, amount, orientation and resin type. With this flexibility comes the need to measure the durability of the composite material system, especially the bond between these two materials due to their markedly different responses to moisture. This study is two-fold; the first section examines methods for the mechanical testing and durability of wood/FRP laminations. Six mechanical tests were evaluated and a modified block shear method was identified as the most suitable due to its ability to provide representative results independent of …