Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Engineering

Motion Control Simulation Of A Hexapod Robot, Weishu Zhan Apr 2023

Motion Control Simulation Of A Hexapod Robot, Weishu Zhan

Dartmouth College Master’s Theses

This thesis addresses hexapod robot motion control. Insect morphology and locomotion patterns inform the design of a robotic model, and motion control is achieved via trajectory planning and bio-inspired principles. Additionally, deep learning and multi-agent reinforcement learning are employed to train the robot motion control strategy with leg coordination achieves using a multi-agent deep reinforcement learning framework. The thesis makes the following contributions:

First, research on legged robots is synthesized, with a focus on hexapod robot motion control. Insect anatomy analysis informs the hexagonal robot body and three-joint single robotic leg design, which is assembled using SolidWorks. Different gaits are …


Multi-Agent Learning For Game-Theoretical Problems, Kshitija Taywade Jan 2023

Multi-Agent Learning For Game-Theoretical Problems, Kshitija Taywade

Theses and Dissertations--Computer Science

Multi-agent systems are prevalent in the real world in various domains. In many multi-agent systems, interaction among agents is inevitable, and cooperation in some form is needed among agents to deal with the task at hand. We model the type of multi-agent systems where autonomous agents inhabit an environment with no global control or global knowledge, decentralized in the true sense. In particular, we consider game-theoretical problems such as the hedonic coalition formation games, matching problems, and Cournot games. We propose novel decentralized learning and multi-agent reinforcement learning approaches to train agents in learning behaviors and adapting to the environments. …


Benchmarking Model Predictive Control And Reinforcement Learning For Legged Robot Locomotion, Shivayogi Akki Jan 2023

Benchmarking Model Predictive Control And Reinforcement Learning For Legged Robot Locomotion, Shivayogi Akki

Dissertations, Master's Theses and Master's Reports

This research delves into the realm of quadrupedal robotics, focusing on the comparative analysis of Model Predictive Control (MPC) and Reinforcement Learning (RL) as predominant control strategies. Through the comprehensive dataset compiled and the insights derived from this analysis, this research aims to serve as a valuable resource for the legged robotics community, guiding researchers and practitioners in the selection and implementation of control strategies. The ultimate goal is to contribute to the advancement of legged robot capabilities and facilitate their successful deployment in real-world applications.

In this study, we employ the Unitree Go1 quadrupedal robot as a testbed, subjecting …


Adaptive Multi-Scale Place Cell Representations And Replay For Spatial Navigation And Learning In Autonomous Robots, Pablo Scleidorovich Oct 2022

Adaptive Multi-Scale Place Cell Representations And Replay For Spatial Navigation And Learning In Autonomous Robots, Pablo Scleidorovich

USF Tampa Graduate Theses and Dissertations

Place cells are one of the most widely studied neurons thought to play a vital role in spatial cognition. Extensive studies show that their activity in the rodent hippocampus is highly correlated with the animal’s spatial location, forming “place fields” of smaller sizes near the dorsal pole and larger sizes near the ventral pole. Despite advances, it is yet unclear how this multi-scale representation enables navigation in complex environments.

In this dissertation, we analyze the place cell representation from a computational point of view, evaluating how multi-scale place fields impact navigation in large and cluttered environments. The objectives are to …


Analyzing Decision-Making In Robot Soccer For Attacking Behaviors, Justin Rodney Mar 2022

Analyzing Decision-Making In Robot Soccer For Attacking Behaviors, Justin Rodney

USF Tampa Graduate Theses and Dissertations

In robotics soccer, decision-making is critical to the performance of a team’s SoftwareSystem. The University of South Florida’s (USF) RoboBulls team implements behavior for the robots by using traditional methods such as analytical geometry to path plan and determine whether an action should be taken. In recent works, Machine Learning (ML) and Reinforcement Learning (RL) techniques have been used to calculate the probability of success for a pass or goal, and even train models for performing low-level skills such as traveling towards a ball and shooting it towards the goal[1, 2]. Open-source frameworks have been created for training Reinforcement Learning …


Rebalancing Shared Mobility Systems By User Incentive Scheme Via Reinforcement Learning, Matthew Brian Schofield Jun 2021

Rebalancing Shared Mobility Systems By User Incentive Scheme Via Reinforcement Learning, Matthew Brian Schofield

Theses and Dissertations

Shared mobility systems regularly suffer from an imbalance of vehicle supply within the system, leading to users being unable to receive service. If such imbalance problems are not mitigated some users will not be serviced. There is an increasing interest in the use of reinforcement learning (RL) techniques for improving the resource supply balance and service level of systems. The goal of these techniques is to produce an effective user incentivization policy scheme to encourage users of a shared mobility system to slightly alter their travel behavior in exchange for a small monetary incentive. These slight changes in user behavior …


A Study Of Deep Reinforcement Learning In Autonomous Racing Using Deepracer Car, Mukesh Ghimire May 2021

A Study Of Deep Reinforcement Learning In Autonomous Racing Using Deepracer Car, Mukesh Ghimire

Honors Theses

Reinforcement learning is thought to be a promising branch of machine learning that has the potential to help us develop an Artificial General Intelligence (AGI) machine. Among the machine learning algorithms, primarily, supervised, semi supervised, unsupervised and reinforcement learning, reinforcement learning is different in a sense that it explores the environment without prior knowledge, and determines the optimal action. This study attempts to understand the concept behind reinforcement learning, the mathematics behind it and see it in action by deploying the trained model in Amazon's DeepRacer car. DeepRacer, a 1/18th scaled autonomous car, is the agent which is trained …


Neural Network Supervised And Reinforcement Learning For Neurological, Diagnostic, And Modeling Problems, Donald Wunsch Iii Jan 2021

Neural Network Supervised And Reinforcement Learning For Neurological, Diagnostic, And Modeling Problems, Donald Wunsch Iii

Masters Theses

“As the medical world becomes increasingly intertwined with the tech sphere, machine learning on medical datasets and mathematical models becomes an attractive application. This research looks at the predictive capabilities of neural networks and other machine learning algorithms, and assesses the validity of several feature selection strategies to reduce the negative effects of high dataset dimensionality. Our results indicate that several feature selection methods can maintain high validation and test accuracy on classification tasks, with neural networks performing best, for both single class and multi-class classification applications. This research also evaluates a proof-of-concept application of a deep-Q-learning network (DQN) to …


Eliciting & Visualizing Bias In Hiring Practices, Tsitsi Mambo Jan 2021

Eliciting & Visualizing Bias In Hiring Practices, Tsitsi Mambo

Senior Projects Fall 2021

This project seeks to develop a way to elicit and visualize bias in the hiring process through the use of Markov Decision Processes, a mathematical framework for modeling decision processes. Three forms of the simulation: User-defined, Random, and Q-learning, were created and their policies were analyzed and compared. Heat Map and Donut Pie visualizations are utilized to present the Policies created from the Models. This project is designed to display the decisions as a form of countering bias during the hiring process.


Reinforcement Learning Approach For Inspect/Correct Tasks, Hoda Nasereddin Dec 2020

Reinforcement Learning Approach For Inspect/Correct Tasks, Hoda Nasereddin

LSU Doctoral Dissertations

In this research, we focus on the application of reinforcement learning (RL) in automated agent tasks involving considerable target variability (i.e., characterized by stochastic distributions); in particular, learning of inspect/correct tasks. Examples include automated identification & correction of rivet failures in airplane maintenance procedures, and automated cleaning of surgical instruments in a hospital sterilization processing department. The location of defects and the corrective action to be taken for each varies from task episode. What needs to be learned are optimal stochastic strategies rather than optimization of any one single defect type and location. RL has been widely applied in robotics …


A Comprehensive And Modular Robotic Control Framework For Model-Less Control Law Development Using Reinforcement Learning For Soft Robotics, Charles Sullivan Jan 2020

A Comprehensive And Modular Robotic Control Framework For Model-Less Control Law Development Using Reinforcement Learning For Soft Robotics, Charles Sullivan

Open Access Theses & Dissertations

Soft robotics is a growing field in robotics research. Heavily inspired by biological systems, these robots are made of softer, non-linear, materials such as elastomers and are actuated using several novel methods, from fluidic actuation channels to shape changing materials such as electro-active polymers. Highly non-linear materials make modeling difficult, and sensors are still an area of active research. These issues have rendered typical control and modeling techniques often inadequate for soft robotics. Reinforcement learning is a branch of machine learning that focuses on model-less control by mapping states to actions that maximize a specific reward signal. Reinforcement learning has …


Robot Motion Planning In Dynamic Environments, Hao-Tien Lewis Chiang Dec 2019

Robot Motion Planning In Dynamic Environments, Hao-Tien Lewis Chiang

Computer Science ETDs

Robot motion planning in dynamic environments is critical for many robotic applications, such as self-driving cars, UAVs and service robots operating in changing environments. However, motion planning in dynamic environments is very challenging as this problem has been shown to be NP-Hard and in PSPACE, even in the simplest case. As a result, the lack of safe, efficient planning solutions for real-world robots is one of the biggest obstacles for ubiquitous adoption of robots in everyday life. Specifically, there are four main challenges facing motion planning in dynamic environments: obstacle motion uncertainty, obstacle interaction, complex robot dynamics and noise, and …


Artificial Intelligence Empowered Uavs Data Offloading In Mobile Edge Computing, Nicholas Alexander Kemp Nov 2019

Artificial Intelligence Empowered Uavs Data Offloading In Mobile Edge Computing, Nicholas Alexander Kemp

Electrical and Computer Engineering ETDs

The advances introduced by Unmanned Aerial Vehicles (UAVs) are manifold and have paved the path for the full integration of UAVs, as intelligent objects, into the Internet of Things (IoT). This paper brings artificial intelligence into the UAVs data offloading process in a multi-server Mobile Edge Computing (MEC) environment, by adopting principles and concepts from game theory and reinforcement learning. Initially, the autonomous MEC server selection for partial data offloading is performed by the UAVs, based on the theory of the stochastic learning automata. A non-cooperative game among the UAVs is then formulated to determine the UAVs' data to be …


Utilizing Trajectory Optimization In The Training Of Neural Network Controllers, Nicholas Kimball Sep 2019

Utilizing Trajectory Optimization In The Training Of Neural Network Controllers, Nicholas Kimball

Master's Theses

Applying reinforcement learning to control systems enables the use of machine learning to develop elegant and efficient control laws. Coupled with the representational power of neural networks, reinforcement learning algorithms can learn complex policies that can be difficult to emulate using traditional control system design approaches. In this thesis, three different model-free reinforcement learning algorithms, including Monte Carlo Control, REINFORCE with baseline, and Guided Policy Search are compared in simulated, continuous action-space environments. The results show that the Guided Policy Search algorithm is able to learn a desired control policy much faster than the other algorithms. In the inverted pendulum …


Reinforcement Learning In Robotic Task Domains With Deictic Descriptor Representation, Harry Paul Moore Oct 2018

Reinforcement Learning In Robotic Task Domains With Deictic Descriptor Representation, Harry Paul Moore

LSU Doctoral Dissertations

In the field of reinforcement learning, robot task learning in a specific environment with a Markov decision process backdrop has seen much success. But, extending these results to learning a task for an environment domain has not been as fruitful, even for advanced methodologies such as relational reinforcement learning. In our research into robot learning in environment domains, we utilize a form of deictic representation for the robot’s description of the task environment. However, the non-Markovian nature of the deictic representation leads to perceptual aliasing and conflicting actions, invalidating standard reinforcement learning algorithms. To circumvent this difficulty, several past research …


Mastering The Game Of Gomoku Without Human Knowledge, Yuan Wang Jun 2018

Mastering The Game Of Gomoku Without Human Knowledge, Yuan Wang

Master's Theses

Gomoku, also called Five in a row, is one of the earliest checkerboard games invented by humans. For a long time, it has brought countless pleasures to us. We humans, as players, also created a lot of skills in playing it. Scientists normalize and enter these skills into the computer so that the computer knows how to play Gomoku. However, the computer just plays following the pre-entered skills, it doesn’t know how to develop these skills by itself. Inspired by Google’s AlphaGo Zero, in this thesis, by combining the technologies of Monte Carlo Tree Search, Deep Neural Networks, and Reinforcement …


Adaptive Dynamic Programming With Eligibility Traces And Complexity Reduction Of High-Dimensional Systems, Seaar Jawad Kadhim Al-Dabooni Jan 2018

Adaptive Dynamic Programming With Eligibility Traces And Complexity Reduction Of High-Dimensional Systems, Seaar Jawad Kadhim Al-Dabooni

Doctoral Dissertations

"This dissertation investigates the application of a variety of computational intelligence techniques, particularly clustering and adaptive dynamic programming (ADP) designs especially heuristic dynamic programming (HDP) and dual heuristic programming (DHP). Moreover, a one-step temporal-difference (TD(0)) and n-step TD (TD(λ)) with their gradients are utilized as learning algorithms to train and online-adapt the families of ADP. The dissertation is organized into seven papers. The first paper demonstrates the robustness of model order reduction (MOR) for simulating complex dynamical systems. Agglomerative hierarchical clustering based on performance evaluation is introduced for MOR. This method computes the reduced order denominator of the transfer …


Multi-Scale Spatial Cognition Models And Bio-Inspired Robot Navigation, Martin I. Llofriu Alonso Jun 2017

Multi-Scale Spatial Cognition Models And Bio-Inspired Robot Navigation, Martin I. Llofriu Alonso

USF Tampa Graduate Theses and Dissertations

The rodent navigation system has been the focus of study for over a century. Discoveries made lately have provided insight on the inner workings of this system. Since then, computational approaches have been used to test hypothesis, as well as to improve robotics navigation and learning by taking inspiration on the rodent navigation system.

This dissertation focuses on the study of the multi-scale representation of the rat’s current location found in the rat hippocampus. It first introduces a model that uses these different scales in the Morris maze task to show their advantages. The generalization power of larger scales of …


Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich Dec 2015

Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich

Doctoral Dissertations

Neural networks have had many great successes in recent years, particularly with the advent of deep learning and many novel training techniques. One issue that has affected neural networks and prevented them from performing well in more realistic online environments is that of catastrophic forgetting. Catastrophic forgetting affects supervised learning systems when input samples are temporally correlated or are non-stationary. However, most real-world problems are non-stationary in nature, resulting in prolonged periods of time separating inputs drawn from different regions of the input space.

Reinforcement learning represents a worst-case scenario when it comes to precipitating catastrophic forgetting in neural networks. …


A Comparison Of The Performance Of Neural Q-Learning And Soar-Rl On A Derivative Of The Block Design (Bd)/Block Design Multiple Choice (Bdmc) Subtests On The Wisc-Iv Intelligence Test, Charreau Bell Dec 2011

A Comparison Of The Performance Of Neural Q-Learning And Soar-Rl On A Derivative Of The Block Design (Bd)/Block Design Multiple Choice (Bdmc) Subtests On The Wisc-Iv Intelligence Test, Charreau Bell

All Theses

Teaching an autonomous agent to perform tasks that are simple to humans can be complex, especially when the task requires successive steps, has a low likelihood of successful completion with a brute force approach, and when the solution space is too large or too complex to be explicitly encoded. Reinforcement learning algorithms are particularly suited to such situations, and are based on rewards that help the agent to find the optimal action to execute given a certain state. The task investigated in this thesis is a modified form of the Block Design (BD) and Block Design Multiple Choice (BDMC) subtests, …