Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Characterization And Evaluation Of Cordless Nailer Performance For Liquid And Gaseous Fuels, Mark Carioscio Oct 2018

Characterization And Evaluation Of Cordless Nailer Performance For Liquid And Gaseous Fuels, Mark Carioscio

Master's Theses (2009 -)

The Paslode Cordless XP Framing Nailer is a combustion-powered nail gun that operates using a fuel blend of a propylene and 1-butene. This tool is designed to drive nails using a piston driven by a combustion reaction. The current fuel blend is able to fire approximately 1200 shots per fuel cartridge and match the energy output of pneumatic, corded nailers on the market. This thesis is written with the intent to gain a better understanding of the operation of the tool and how its performance varies when the fuel source is altered. A bizonal combustion model was created to simulate …


Thermochemical Conversion Of Biomass: Detailed Gasification And Near-Burner Co-Firing Measurements, Jacob B. Beutler Oct 2018

Thermochemical Conversion Of Biomass: Detailed Gasification And Near-Burner Co-Firing Measurements, Jacob B. Beutler

Theses and Dissertations

An increasing emphasis on mitigating global climate change (global warming) over the last few decades has created interest in a broad range of sustainable or alternative energy systems to replace fossil fuel combustion. Biomass, when harvested responsibly, is a renewable fuel with many uses in replacing fossil fuels. Cofiring biomass with coal in traditional large-scale coal power plants represents one of the lowest risk, least costly, near-term methods of CO2 mitigation. Simultaneously, it is one of the most efficient and inexpensive uses of biomass. Alternatively, biomass can be transformed into useful products through gasification to produce clean syngas for …


Reconstruction Of The 3d Temperature And Species Concentration Spatial Distribution Of A Jet Engine Exhaust Plume Using An Infrared Fourier Transform Spectrometer Hyperspectral Imager, Mason D. Paulec Sep 2018

Reconstruction Of The 3d Temperature And Species Concentration Spatial Distribution Of A Jet Engine Exhaust Plume Using An Infrared Fourier Transform Spectrometer Hyperspectral Imager, Mason D. Paulec

Theses and Dissertations

The measurement of combustion byproducts is useful for determining pollution of any fuel burning application, efficiency of combustion, and determining detectability of aircraft exhausts. Both intrusive and non-intrusive techniques have been utilized to measure these quantities. For the majority of the non-intrusive techniques, the absorption and emission spectra of the gases are utilized for measurements. For this research, the use of the Telops Infrared Fourier Transform Spectrometer (IFTS) Hyperspectral Imager (HSI) was explored within the scope of combustion diagnostic methods, as an option for remote measurements of a jet turbine to determine concentration of species and temperature of the combustion …


Combustion Dynamics And Heat Transfer In An Ultra Compact Combustor, Brian T. Bohan Sep 2018

Combustion Dynamics And Heat Transfer In An Ultra Compact Combustor, Brian T. Bohan

Theses and Dissertations

The Ultra Compact Combustor (UCC) is an innovative combustion system alternative to a traditional turbine engine burner with the potential to improve engine efficiency with a reduced combustor volume. The UCC shortens the axial length of the combustor, and therefore reduces engine weight, by burning in an annulus and swirling the reactants in the circumferential direction. These length and weight improvements can directly lead to an increased thrust-to-weight rating of the engine. The present research included five objectives which advanced the UCC concept on four fronts; cooling UCC turbine vanes, advanced computational modeling of UCC systems, system air split control …


Kinetic Study Of Free Radical-Radical Reactions Of Combustion Importance At Elevated Pressures, Chao Yan May 2018

Kinetic Study Of Free Radical-Radical Reactions Of Combustion Importance At Elevated Pressures, Chao Yan

Dissertations

Combustion mechanisms consist of hundreds elementary reactions of free radicals and stable molecules. Radical-radical elementary reactions play important roles due to the high concentration in which free radicals are accumulated in combustion systems. Radical-radical reactions are typically multi-channel. Some of the channels might be of chain propagation or even chain branching nature, while other channels might be of chain termination nature. The relative importance of different channels is pressure dependent. Compared to radical-molecule reactions, radical-radical reactions are much less studied. This is due to the difficulties of well characterized quantitative production of radical species as well as due to the …


Fundamental Studies Of Solid-Fuel Combustion Using A Two-Stage Flat-Flame Burner, Adewale Ayodeji Adeosun May 2018

Fundamental Studies Of Solid-Fuel Combustion Using A Two-Stage Flat-Flame Burner, Adewale Ayodeji Adeosun

McKelvey School of Engineering Theses & Dissertations

Innovative coal technologies are essential for addressing concerns about air pollution and global climate change. A key pathway to advancing these technologies is through developing a thorough understanding of the fundamental physical and chemical processes that occur during coal combustion. Ignition influences many aspects of coal combustion, including flame stability, submicron aerosol evolution, and char burnout. As important as ignition and these associated processes are, they are challenging to study because they depend on many factors, such as the combustion environment, particle size, and particle-particle interactions.

While there have been many studies of coal ignition, none have studied the process …


Combustion Of Nanocomposite Thermite Powders, Ian Monk Apr 2018

Combustion Of Nanocomposite Thermite Powders, Ian Monk

Dissertations

This work investigates combustion of nanocomposite thermite powders prepared by arrested reactive milling (ARM). The focus is on how ARM as a top-down approach to nano-thermite building generating fully-dense nanocomposite particles with dimensions of 1-100 µm affects the rates and mechanism of their combustion. A variety of thermites are milled using both aluminum and zirconium as fuels combined with several oxidizers (WoO3, MoO3, CuO, Fe2O3, and Bi2O3). The powders are ignited using both an electrostatic discharge (ESD) and a CO2 laser beam.

A range of parameters vary …


Simulation Of An Ethylene Flame With Turbulence, Soot And Radiation Modeling, Santu Golder Jan 2018

Simulation Of An Ethylene Flame With Turbulence, Soot And Radiation Modeling, Santu Golder

Electronic Theses and Dissertations

This thesis will investigate soot models that are available in commercial codes. We will look at the effect of turbulence models, gravity, soot models and radiation. Simulations will be compared to Coppalle and Joyeux [1]. The flame is an ethylene air diffusion flame at a Reynolds number of 5700. Simulations show the SST turbulence model, one-step soot model and Rosseland radiation model including gravity agree well with experimental data (temperature and soot). Flamelet soot modeling from Carbonell et al. [2] and flamelet radiation modeling from Doom [3] has been incorporated and compared as well.


Investigation Of The Performance And Emissions Characteristics Of Dual Fuel Combustion In A Single Cylinder Idi Diesel Engine, Johnnie L. Williams Jr Jan 2018

Investigation Of The Performance And Emissions Characteristics Of Dual Fuel Combustion In A Single Cylinder Idi Diesel Engine, Johnnie L. Williams Jr

Electronic Theses and Dissertations

Restrictions in the allowable exhaust gas emissions of diesel engines has become a driving factor in the design, development, and implementation of internal combustion (IC) engines. A dual fuel research engine concept was developed and implemented in an indirect injected engine in order to research combustion characteristics and emissions for non-road applications. The experimental engine was operated at a constant speed and load 2400 rpm and 5.5 bar indicated mean effective pressure (IMEP). n-Butanol was port fuel injected at 10%, 20%, 30%, and 40% by mass fraction with neat ultra-low sulfur diesel (ULSD#2). Peak pressure, maximum pressure rise rates, and …


Design And Experimental Study Of A High Pressure And Supercritical Methane-Oxygen Burner, A S M Arifur Rahim Chowdhury Jan 2018

Design And Experimental Study Of A High Pressure And Supercritical Methane-Oxygen Burner, A S M Arifur Rahim Chowdhury

Open Access Theses & Dissertations

Directly heated supercritical oxy-fuel power cycles have potential to offer a higher thermal efficiency and lower pollutant emissions compared to existing power cycles. Recent thermodynamic analysis of the cycle performed by several groups including the UTEP-Air Liquide research team show that combustion in the vicinity of 300 bar pressure and 1000-1400 K temperature allows for relatively high system efficiencies while operating within the limit of practical combustor materials. However, the realization of directly heated supercritical power cycle requires combustion systems be designed to operate in supercritical conditions and at temperature far below the blowout limit of conventional flames (above 1500 …


NoX Formation In Light-Hydrocarbon, Premixed Flames, Robert T. Hughes Jan 2018

NoX Formation In Light-Hydrocarbon, Premixed Flames, Robert T. Hughes

Theses and Dissertations--Mechanical Engineering

This study explores the reactions and related species of NOx pollutants in methane flames in order to understand their production and consumption during the combustion process. To do this, several analytical simulations were run to explore the behavior of nitrogen species in the pre-flame, post- flame, and reaction layer regions. The results were then analyzed in order to identify all "steady-state" species in the flame as well as the determine all the unnecessary reactions and species that are not required to meet a defined accuracy. The reductions were then applied and proven to be viable.


Nox Formation In Syngas/Air Combustion, Nazli Asgari Jan 2018

Nox Formation In Syngas/Air Combustion, Nazli Asgari

Theses and Dissertations

Syngas is a reliable energy source derived from the gasification of coal and other solid fuels. The feedstock type and the production process of syngas can affect the composition of syngas. Gas turbines utilizing high hydrogen content (HHC) fuels like syngas for power generation applications need to meet stringent pollutant emission standards, particularly with respect to nitrogen oxides (NOx). For gas turbine conditions, reliable experimental data, especially at high-pressure, is necessary for both generating accurate NOx prediction models and improving reaction pathways regarding the NOx chemistry. In this study, NOx formation in post-flame gases of syngas combustion at different conditions …