Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

A Distributed Real-Time Short-Term Solar Irradiation Forecasting Network For Photovoltaic Systems, Michael Adelbert Gacusan Dec 2018

A Distributed Real-Time Short-Term Solar Irradiation Forecasting Network For Photovoltaic Systems, Michael Adelbert Gacusan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Solar irradiation forecasting is essential for PV connected electrical grids to maintain reliability, stability, and effective matching of real-time demand to power distribution. This research paper develops and evaluates proposed forecasting methods using wireless sensor networks. Each node of the network is capable of monitoring illuminance data and communicate it through RF and/or WiFi. The nodes are calibrated with respect to irradiance data from an industry-standard pyranometer. Power consumption of each node type is also collected at different operating states. The proposed sensor network can estimate a cloud motion vector or a cloud shadow’s speed and direction from the data …


Grid-Tied Solar System, Virginia Yan Dec 2018

Grid-Tied Solar System, Virginia Yan

Electrical Engineering

Distribution level solar energy generation has gained importance and popularity, because it helps create a sustainable electricity system while reducing the harmful environmental impacts our current power systems have. This project proposes an alternative energy source, a laboratory-scale grid-connected photovoltaic system. A KC120-1 solar panel produces 120 Watts maximum. A grid-tied solar power inverter does DC-to-AC conversion and minimizes energy transfer losses. The inverter also has an anti-islanding feature, which senses a power outage and prevents back-feeding through isolating the circuit. The circuit breakers isolate electrical components and protect the circuit. Schweitzer Engineering Laboratories SEL-751 feeder protection relay and SEL-735 …


Circuit Breaker Module, Garvin Yee, Yei Trinh Jun 2018

Circuit Breaker Module, Garvin Yee, Yei Trinh

Electrical Engineering

The circuit breaker module for this design project is a proof of concept that demonstrates the functionality, feasibility, and attainability of a consumer grade power systems analysis device suitable for college laboratory use. The goal of this project was to create the final iteration of a module that has been developed and refined over the course of previous years. The Cal Poly Electrical Engineering Department intends to use this design to produce circuit breaker modules intended for fault analysis. With the current changes made to the previous modules, the current circuit breaker is lighter, safer, and more universally reproducible. The …


Microgrid Reliability Evaluation Based On Condition-Dependent Failure Models Of Power Electronic Devices, Qi Li May 2018

Microgrid Reliability Evaluation Based On Condition-Dependent Failure Models Of Power Electronic Devices, Qi Li

Theses and Dissertations

Microgrid, a distributed energy system consisting of distributed energy and loads, aims to ensure reliable and affordable energy security in urban and rural communities. With the growing global energy need and the emerging threat of climate change, green renewable energy is becoming a new favorite in the field of power generation. Microgrids have received wide spread attention and application for their minimizing carbon dioxide and greenhouse gas emissions. Microgrids do so by maximizing clean local energy generation as well

as reducing the stress of the transmission and distribution system.

With the use of renewable energy, the reliability performance of microgrids …


Protection, Automation, And Frequency Stability Analysis Of A Laboratory Microgrid System, Christopher Eric Osborn May 2018

Protection, Automation, And Frequency Stability Analysis Of A Laboratory Microgrid System, Christopher Eric Osborn

Master's Theses

Due to increasing changes in the power industry, Cal Poly San Luis Obispo's electrical engineering department introduced a set of initiatives to adequately equip students with the skills and knowledge to interact with new technologies. Specifically, the department proposed a microgrid and power systems protection and automation laboratory to strengthen students' knowledge of microprocessor-based relays. This paper outlines a microgrid laboratory system that fulfills the initiative's goal and proposes a collection of laboratory experiments for inclusion in a new laboratory course at Cal Poly. The experiments provide students with practical experience using Schweitzer Engineering Laboratory (SEL) relays and teach fundamental …


Modeling And Analysis Of Cal Poly Microgrid, Matthew A. Guevara Apr 2018

Modeling And Analysis Of Cal Poly Microgrid, Matthew A. Guevara

Master's Theses

Microgrids—miniature versions of the electrical grid are becoming increasingly more popular as advancements in technologies, renewable energy mandates, and decreased costs drive communities to adopt them. The modern microgrid has capabilities of generating, distributing, and regulating the flow of electricity, capable of operating in both grid-connected and islanded (disconnected) conditions. This paper utilizes ETAP software in the analysis, simulation, and development of the Cal Poly microgrid. Additionally, an ETAP power system protection tutorial is created to aid students entering the power industry. Microprocessor-based relays are heavily utilized in both the ETAP model and hardware implementation of the system. Case studies …


Economic And Environmentally Efficient Energy Management System For Optimal Microgrid Operation, Olayinka Samuel Obafemi Jan 2018

Economic And Environmentally Efficient Energy Management System For Optimal Microgrid Operation, Olayinka Samuel Obafemi

Open Access Theses & Dissertations

The aim of this Thesis is to study and understand the economic analysis of integrating renewable energy resources for the purpose of improving the system grid, identifying and monetizing benefits and cost. This Thesis discusses the approach taken and solution created to tackle the current problems facing the production and consumption of electricity and how the microgrid has become a platform for improvement in power system operation. A microgrid in islanded and connected mode are simulated using Homer Pro for optimization and its results help gain an insight into analyzing and monetizing cost and benefits with one common goal in …


Optimal Planning Of Microgrid-Integrated Battery Energy Storage, Ibrahim S. Alsaidan Jan 2018

Optimal Planning Of Microgrid-Integrated Battery Energy Storage, Ibrahim S. Alsaidan

Electronic Theses and Dissertations

Battery energy storage (BES) is a core component in reliable, resilient, and cost-effective operation of microgrids. When appropriately sized, BES can provide the microgrid with both economic and technical benefits. Besides the BES size, it is found that there are mainly three planning parameters that impact the BES performance, including the BES integration configuration, technology, and depth of discharge.

In this dissertation, the impact of each one of these parameters on the microgrid-integrated BES planning problem is investigated. Three microgrid-integrated BES planning models are developed to individually find the optimal values for the aforementioned parameters. These three microgrid-integrated BES planning …


Practical Dwell Times For Switched System Stability With Smart Grid Application, William Roy St. Pierre Jan 2018

Practical Dwell Times For Switched System Stability With Smart Grid Application, William Roy St. Pierre

Masters Theses

"Switched systems are encountered throughout many engineering disciplines, but confirming their stability is a challenging task. Even if each subsystem is asymptotically stable, certain switching sequences may exist that drive the overall system states into unacceptable regions. This thesis contains a process that grants stability under switching to switched systems with multiple operating points. The method linearizes a switched system about its distinct operating points, and employs multiple Lyapunov functions to produce modal dwell times that yield stability. This approach prioritizes practicality and is designed to be useful for large systems with many states and subsystems due to its ease …