Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Numerical Analysis Of The Extrusion Of Fiber Optic And Photonic Crystal Fiber Preforms Near The Glass Transition Temperature, Mohamed Trabelssi May 2014

Numerical Analysis Of The Extrusion Of Fiber Optic And Photonic Crystal Fiber Preforms Near The Glass Transition Temperature, Mohamed Trabelssi

All Dissertations

Conventional clad core fiber optic technology has relied on a concentric structure of glass of different refraction indices. These conventional fibers suffer from constraints and limitations related to thermal expansion compatibility between the core and the glass. The new fiber technology broadly characterized as Microstructured Optic Fibers (MOFs) is intended to lift the limitations of conventional clad core fibers and also extend the range of application of fiber optics. Photonic Cristal Fibers(PCFs) are a special family of Microstructured Optic Fibers characterized by the presence of holes in the cross section of the fiber that are organized in a hexagonal pattern. …


Broad Bandwidth, All-Fiber, Thulium-Doped Photonic Crystal Fiber Amplifier For Potential Use In Scaling Ultrashort Pulse Peak Powers, Alex Sincore Jan 2014

Broad Bandwidth, All-Fiber, Thulium-Doped Photonic Crystal Fiber Amplifier For Potential Use In Scaling Ultrashort Pulse Peak Powers, Alex Sincore

Electronic Theses and Dissertations

Fiber based ultrashort pulse laser sources are desirable for many applications; however generating high peak powers in fiber lasers is primarily limited by the onset of nonlinear effects such as self-phase modulation, stimulated Raman scattering, and self-focusing. Increasing the fiber core diameter mitigates the onset of these nonlinear effects, but also allows unwanted higher-order transverse spatial modes to propagate. Both large core diameters and single-mode propagation can be simultaneously attained using photonic crystal fibers. Thulium-doped fiber lasers are attractive for high peak power ultrashort pulse systems. They offer a broad gain bandwidth, capable of amplifying sub-100 femtosecond pulses. The longer …


Specialty Fiber Lasers And Novel Fiber Devices, Clemence Jollivet Jan 2014

Specialty Fiber Lasers And Novel Fiber Devices, Clemence Jollivet

Electronic Theses and Dissertations

At the Dawn of the 21st century, the field of specialty optical fibers experienced a scientific revolution with the introduction of the stack-and-draw technique, a multi-steps and advanced fiber fabrication method, which enabled the creation of well-controlled micro-structured designs. Since then, an extremely wide variety of finely tuned fiber structures have been demonstrated including novel materials and novel designs. As the complexity of the fiber design increased, highly-controlled fabrication processes became critical. To determine the ability of a novel fiber design to deliver light with properties tailored according to a specific application, several mode analysis techniques were reported, addressing the …