Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Residual Stress Measurement Of 7050 Aluminum Alloy Open Die Forgings Using The Hole-Drilling Method, Alexandra Viksne Jun 2013

Residual Stress Measurement Of 7050 Aluminum Alloy Open Die Forgings Using The Hole-Drilling Method, Alexandra Viksne

Materials Engineering

Open die forged 7050 aluminum alloy has residual stresses that can be measured by the hole-drilling method following standard ASTM E837-01. Weber Metals (Paramount, CA) assumes that the stress is uniform throughout the thickness of an open die forged plate. Four different stress relieved 7050 aluminum samples were tested to confirm if the measurements by the hole-drilling method at the surface of a plate is indicative of the stress throughout. The different stress relief methods included: two water quenched samples at temperature ranges of 60°-90°F and 120°-130°F and two samples plastically deformed by forging at room temperature 1% and 3%. …


Evaluation Of Forging Strain For Maximum Grain Size In Open-Die Forged 6061 Aluminum, Eric Strehl Jun 2013

Evaluation Of Forging Strain For Maximum Grain Size In Open-Die Forged 6061 Aluminum, Eric Strehl

Materials Engineering

In an effort to maximize grain growth of open-die forged 6061 aluminum alloy parts, samples from three of Weber Metals’s suppliers (Hidal Co-Almex USA Inc., TST Inc., and Vista Metals Corp.; to be called Supplier H, Supplier T, Supplier V respectively) were cut into cylinders with diameters of 0.75˝ and heights of 2˝, and put through a simulated forging process and heat treatment. It is possible that additional alloying elements may be promoting or inhibiting grain growth in the final part. Maximizing grain growth for aluminum alloy parts results in improved resistance to intergranular corrosion. Samples from each vendor had …


Metal Based Reactive Nanocomposites Prepared By Cryomilling, Shasha Zhang May 2013

Metal Based Reactive Nanocomposites Prepared By Cryomilling, Shasha Zhang

Dissertations

Aluminum is one of the most commonly used metal fuel additives for propellants, explosives, and pyrotechnics. Recent interest has been focused on replacements for aluminum as fuel additives to achieve higher combustion temperatures and stronger pressure pulses for applications in advanced munitions systems. Two applications are addressed in this work. In the applications for explosives designed to defeat stockpiles of chemical and biological weapons, it is of interest to develop multifunctional materials combining the high energy density of metal fuels with the biocidal activity of halogens. A challenge of this effort is to design and prepare powder-like Al-I2 materials which …


Experimental Study On The Fabrication Of Advanced Materials For Energy Applications Using High Energy Mechanical Milling, Ashvin Kumar Narayana Swamy Jan 2013

Experimental Study On The Fabrication Of Advanced Materials For Energy Applications Using High Energy Mechanical Milling, Ashvin Kumar Narayana Swamy

Open Access Theses & Dissertations

The reaction of aluminum (Al) powder with water has the potential for on demand hydrogen generation. Conventional Al powders, however, react with water slowly due to a highly protective oxide layer on the particle surface. Current methods for Al activation involve harmful and expensive materials. The nano-scale Al powders also remain very expensive and have problems such as a large amount of oxide on the surface. The use of aluminum in an energy generation cycle is also hindered by the fact that, although Al is the most abundant metal in the Earth's crust, its recovery from ore consumes a lot …


Interdiffusion And Impurity Diffusion In Magnesium Solid Solutions, Catherine Kammerer Jan 2013

Interdiffusion And Impurity Diffusion In Magnesium Solid Solutions, Catherine Kammerer

Electronic Theses and Dissertations

Magnesium, being lightweight, offers potential to be developed into extensive structural applications. The transportation segment has particular interest in Mg and Mg alloy for applications where reduced vehicle weight is proportional to increased fuel efficiency. Aluminum and zinc are two of the most common alloying elements in commercial Mg alloys. They improve the physical properties of Mg through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of and microstructural development during solidification and heat treatment. However, there is limited diffusion data available for Mg and Mg alloys. In particular, because Al is monoisotopic, tracer …


Development Of Nitrogen Concentration During Cryomilling Of Aluminum Composites, Clara Hofmeister Jan 2013

Development Of Nitrogen Concentration During Cryomilling Of Aluminum Composites, Clara Hofmeister

Electronic Theses and Dissertations

The ideal properties of a structural material are light weight with extensive strength and ductility. A composite with high strength and tailorable ductility was developed consisting of nanocrystalline AA5083, boron carbide and coarser grained AA5083. The microstructure was determined through optical microscopy and transmission electron microscopy. A technique was developed to determine the nitrogen concentration of an AA5083 composite from secondary ion mass spectrometry utilizing a nitrogen ionimplanted standard. Aluminum nitride and amorphous nitrogen-rich dispersoids were found in the nanocrystalline aluminum grain boundaries. Nitrogen concentration increased as a function of cryomilling time up to 72hours. A greater nitrogen concentration resulted …