Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Cfd Analysis Of A T-38 Wing Fence, Daniel A. Solfelt Jun 2007

Cfd Analysis Of A T-38 Wing Fence, Daniel A. Solfelt

Theses and Dissertations

A computational study of the effects of a wing fence on the T-38 Talon was performed. RANS simulations were conducted using the CFD solver AVUS to examine the flow around the T-38 and the fence at a Reynolds number of 10 million. The T-38 was modeled as a half aircraft with a symmetry plane down the center line and did not include the empennage. The engine inlet and exhaust were modeled as sink and source boundary conditions using mass flow and pressure specifications. Two fence geometries placed 26" from the wing tip were tested. The first fence, called a simple …


Filtered Rayleigh Scattering Measurements In A Bouyant Flowfield, Christopher C. Mcgaha Mar 2007

Filtered Rayleigh Scattering Measurements In A Bouyant Flowfield, Christopher C. Mcgaha

Theses and Dissertations

Filtered Rayleigh Scattering (FRS) is a non-intrusive technique for studying flowfields. Molecular scattering provides the signal to the camera, and the difference in molecular cross section can be used to discriminate between unmixed gaseous components. The focus of this research is to document the behavior of a horizontal buoyant jet using FRS. A helium jet of precisely controlled mass flow rate is injected into a standard room temperature environment, and FRS provides the means to measure its core trajectory and mixing rate. Trajectory analysis, conducted with consideration of the Reynolds number and Grashof number, can be used to compare these …


Developing Dns Tools To Study Channel Flow Over Realistic Plaque Morphology, Ryan M. Beaumont Jan 2007

Developing Dns Tools To Study Channel Flow Over Realistic Plaque Morphology, Ryan M. Beaumont

Electronic Theses and Dissertations

In a normal coronary artery, the flow is laminar and the velocity is parabolic in nature. Over time, plaques deposit along the artery wall, narrowing the artery and creating an obstruction, a stenosis. As the stenosis grows, the characteristics of the flow change and transition occurs, resulting in turbulent flow distal to the stenosis. To date, direct numerical simulation (DNS) of turbulent flow has been performed in a number of studies to understand how stenosis modifies flow dynamics. However, the effect of the actual shape and size of the obstruction has been disregarded in these DNS studies. An ideal approach …