Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Laminar And Turbulent Natural Convection Heat Transfer In Trombe Wall Channels, Tony D. T. Chen Jul 1992

Laminar And Turbulent Natural Convection Heat Transfer In Trombe Wall Channels, Tony D. T. Chen

Mechanical & Aerospace Engineering Theses & Dissertations

The natural convective heat transfer and air movement in a Trombe wall solar passive system has been studied analytically and numerically. Three Trombe wall channel geometries including the parallel channel with axial inlet and exit, parallel channel with side vents and Trombe wall channel coupled to the room have been considered. Several models representing these Trombe wall geometries have been formulated. For the parallel channel with axial inlet and exit geometry, a momentum-integral method has been used to solve parabolic governing equations for two-dimensional laminar flow. This formulation leads to a second order ordinary differential equation for pressure defect in …


Runge-Kutta Upwind Multigrid Multi-Block Three-Dimensional Thin Layer Navier-Stokes Solver, Frank E. Cannizzaro Jul 1992

Runge-Kutta Upwind Multigrid Multi-Block Three-Dimensional Thin Layer Navier-Stokes Solver, Frank E. Cannizzaro

Mechanical & Aerospace Engineering Theses & Dissertations

A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, Upwind numerical techniques, Multigrid acceleration, and Multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available, van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multigrid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with …


Unsteady Euler And Navier-Stokes Computations Around Oscillating Delta Wing Including Dynamics, Ahmed Abd-El-Bar Ahmed Salman Apr 1992

Unsteady Euler And Navier-Stokes Computations Around Oscillating Delta Wing Including Dynamics, Ahmed Abd-El-Bar Ahmed Salman

Mechanical & Aerospace Engineering Theses & Dissertations

Unsteady flows around rigid or flexible delta wings with and without oscillating leading-edge flaps are considered. These unsteady flow problems are categorized under two classes of problems. In the first class, the wing motion is prescribed a priori and in the second class, the wing motion is obtained as a part of the solution. The formulation of the first class includes either the unsteady Euler or unsteady Navier-Stokes equations for the fluid dynamics and the unsteady linearized Navier-displacement (ND) equations for the grid deformation.

The problem of unsteady transonic flow past a bicircular-arc airfoil undergoing prescribed thickening-thinning oscillation is studied …


Control Of Low-Speed Turbulent Separated Flow Over A Backward-Facing Ramp, John C. Lin Apr 1992

Control Of Low-Speed Turbulent Separated Flow Over A Backward-Facing Ramp, John C. Lin

Mechanical & Aerospace Engineering Theses & Dissertations

The relative performance and flow phenomena associated with several devices for controlling turbulent separated flow were investigated at low speeds. Relative performance of the devices was examined for flow over a curved, backward-facing ramp in a wind tunnel, and the flow phenomena were examined in a water tunnel using dye-flow visualization. Surface static pressure measurements and oil-flow visualization results from the wind tunnel tests indicated that transverse grooves, longitudinal grooves, submerged vortex generators, vortex generator jets (VGJ’s), Viets’ fluidic flappers, elongated arches +a + a (positive angle of attack), and large-eddy breakup devices (LEBU’s) +a + a placed near the …


Shape Sensitivity Analysis And Optimization Of Skeletal Structures And Geometrically Nonlinear Solids, Ching-Hung Chuang Apr 1992

Shape Sensitivity Analysis And Optimization Of Skeletal Structures And Geometrically Nonlinear Solids, Ching-Hung Chuang

Mechanical & Aerospace Engineering Theses & Dissertations

Formulations and computational schemes for shape design sensitivity analysis and optimization have been developed for both skeletal structures and geometrically nonlinear elastic solids. The continuum approach, which is based on the weak variational form of the governing differential equation and the concept of the material derivative, plays a central role in such a development.

In the first part of this work, the eigenvalue and eigenvector sensitivity equations for skeletal structures are derived with respect to configuration variables of joint and support locations. This derivation is done by the domain method as well as the boundary method. The discrete approach for …


A Computational Aerodynamic Design Optimization Method Using Sensitivity Analysis, Mohamed E. Eleshaky Apr 1992

A Computational Aerodynamic Design Optimization Method Using Sensitivity Analysis, Mohamed E. Eleshaky

Mechanical & Aerospace Engineering Theses & Dissertations

A new and efficient procedure for aerodynamic shape optimization is presented. The salient lineaments of this procedure are: (1) using a discrete sensitivity analysis approach to determine analytically the aerodynamic sensitivity coefficients; (2) obtaining the flowfield solution either by a computational fluid dynamics (CFD) analysis or, alternatively, by a flowfield extrapolation method which is based on a truncated Taylor's series; (3) defining the aerodynamic shape in such a way that it is not restricted to any class of surfaces and the optimizer automatically shapes the aerodynamic configuration to any arbitrary geometry; and (4) requiring no expertise other than that needed …


Explicit Multistage Schemes For The Solution Of The Three-Dimensional Compressible Euler/Navier-Stokes Equations, Alaa Ahmed Elmiligui Jan 1992

Explicit Multistage Schemes For The Solution Of The Three-Dimensional Compressible Euler/Navier-Stokes Equations, Alaa Ahmed Elmiligui

Mechanical & Aerospace Engineering Theses & Dissertations

The objective of this study was to develop a high-resolution-explicit-multi-block numerical algorithm, suitable for efficient computation of the three-dimensional, time-dependent Euler and Navier-Stokes equations. The resulting algorithm has employed a finite volume approach, using MUSCL-type differencing to obtain state variables at cell interface. Variable interpolations were written in the $\kappa$-scheme formulation. Inviscid fluxes were calculated via Roe's flux-difference splitting, and van Leer's flux-vector splitting techniques, which are considered state of the art. The viscous terms were discretized using a second-order, central-difference operator.

Two classes of explicit time integration has been investigated for solving the compressible inviscid/viscous flow problems--two-stage predictor-corrector schemes, …