Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Localization Of People In Gnss-Denied Environments Using Neural-Inertial Prediction And Kalman Filter Correction, Lauren N. Cash Jan 2023

Localization Of People In Gnss-Denied Environments Using Neural-Inertial Prediction And Kalman Filter Correction, Lauren N. Cash

Graduate Theses, Dissertations, and Problem Reports

This thesis presents a method based on neural networks and Kalman filters for estimating the position of a person carrying a mobile device (i.e., cell phone or tablet) that can communicate with static UWB sensors or is carried in an environment with known landmark positions. This device is used to collect and share inertial measurement unit (IMU) information — which includes data from sensors such as accelerometers, gyroscopes, and magnetometers — and UWB and landmark information. The collected data, in combination with other necessary initial condition information, is input into a pre-trained deep neural network (DNN) which predicts the movement …


Exploiting The Advantages And Overcoming The Challenges Of The Cable In A Tethered Drone System, Rogerio Rodrigues Lima Jan 2023

Exploiting The Advantages And Overcoming The Challenges Of The Cable In A Tethered Drone System, Rogerio Rodrigues Lima

Graduate Theses, Dissertations, and Problem Reports

This dissertation proposes solutions for motion planning, localization, and landing of tethered drones using only tether variables. A tether-based multi-model localization framework for tethered drones is proposed. This framework comprises three independent localization strategies based on a different model. The first strategy uses simple trigonometric relations assuming that the tether is taut; the second method relies on a set of catenary equations for the slack tether case; the third estimator is a neural network-based predictor that can cover different tether shapes. Multi-layer perceptron networks previously trained with a dataset comprised of the tether variables (i.e., length, tether angles on the …


Robust State Estimation Methods For Robotics Applications, Shounak Das Jan 2023

Robust State Estimation Methods For Robotics Applications, Shounak Das

Graduate Theses, Dissertations, and Problem Reports

State estimation is an integral component of any autonomous robotic system. Finding the correct position, velocity, and orientation of an agent in its environment enables it to do other tasks like mapping and interacting with the environment, and collaborating with other agents. State estimation is achieved by using data obtained from multiple sensors and fusing them in a probabilistic framework. These include inertial data from Inertial Measurement Unit (IMU), images from camera, range data from lidars, and positioning data from Global Navigation Satellite Systems (GNSS) receivers. The main challenge faced in sensor-based state estimation is the presence of noisy, erroneous, …


Uncertainty Estimation For Stereo Visual Odometry, Derek W. Ross Jan 2021

Uncertainty Estimation For Stereo Visual Odometry, Derek W. Ross

Graduate Theses, Dissertations, and Problem Reports

Over the past few decades, unmanned aerial vehicles (UAVs) have been increasingly popular for use in locations that are lacking, or have unreliable global navigation satellite system (GNSS) availability. One of the more popular localization techniques for quadrotors is the use of visual odometry (VO) through monocular, RGB-D, or stereo cameras. With primary applications in the context of Simultaneous Localization And Mapping (SLAM) and indoor navigation, VO is largely used in combination with other sensors through Bayesian filters, namely Extended Kalman Filter (EKF) or Particle Filter. This work investigates the accuracy of two standard covariance estimation techniques for a feature-based …


Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo Jan 2021

Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo

Graduate Theses, Dissertations, and Problem Reports

Robots’ autonomy has been studied for decades in different environments, but only recently, thanks to the advance in technology and interests, robots for underground exploration gained more attention. Due to the many challenges that any robot must face in such harsh environments, this remains an challenging and complex problem to solve.

As technology became cheaper and more accessible, the use of robots for underground ex- ploration increased. One of the main challenges is concerned with robot localization, which is not easily provided by any Global Navigation Services System (GNSS). Many developments have been achieved for indoor mobile ground robots, making …


Localization Algorithms For Gnss-Denied And Challenging Environments, Chizhao Yang Jan 2021

Localization Algorithms For Gnss-Denied And Challenging Environments, Chizhao Yang

Graduate Theses, Dissertations, and Problem Reports

In this dissertation, the problem about localization in GNSS-denied and challenging environments is addressed. Specifically, the challenging environments discussed in this dissertation include two different types, environments including only low-resolution features and environments containing moving objects. To achieve accurate pose estimates, the errors are always bounded through matching observations from sensors with surrounding environments. These challenging environments, unfortunately, would bring troubles into matching related methods, such as "fingerprint" matching, and ICP. For instance, in environments with low-resolution features, the on-board sensor measurements could match to multiple positions on a map, which creates ambiguity; in environments with moving objects included, the …


Planetary Rover Inertial Navigation Applications: Pseudo Measurements And Wheel Terrain Interactions, Cagri Kilic Jan 2021

Planetary Rover Inertial Navigation Applications: Pseudo Measurements And Wheel Terrain Interactions, Cagri Kilic

Graduate Theses, Dissertations, and Problem Reports

Accurate localization is a critical component of any robotic system. During planetary missions, these systems are often limited by energy sources and slow spacecraft computers. Using proprioceptive localization (e.g., using an inertial measurement unit and wheel encoders) without external aiding is insufficient for accurate localization. This is mainly due to the integrated and unbounded errors of the inertial navigation solutions and the drifted position information from wheel encoders caused by wheel slippage. For this reason, planetary rovers often utilize exteroceptive (e.g., vision-based) sensors. On the one hand, localization with proprioceptive sensors is straightforward, computationally efficient, and continuous. On the other …