Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

University of Kentucky

Theses and Dissertations--Electrical and Computer Engineering

Axial flux permanent magnet

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Optimal Design Of Special High Torque Density Electric Machines Based On Electromagnetic Fea, Murat G. Kesgin Jan 2023

Optimal Design Of Special High Torque Density Electric Machines Based On Electromagnetic Fea, Murat G. Kesgin

Theses and Dissertations--Electrical and Computer Engineering

Electric machines with high torque density are essential for many low-speed direct-drive systems, such as wind turbines, electric vehicles, and industrial automation. Permanent magnet (PM) machines that incorporate a magnetic gearing effect are particularly useful for these applications due to their potential for achieving extremely high torque density. However, when the number of rotor polarities is increased, there is a corresponding need to increase the number of stator slots and coils proportionally. This can result in manufacturing challenges. A new topology of an axial-flux vernier-type machine of MAGNUS type has been presented to address the mentioned limitation. These machines can …


Optimum Design Of Axial Flux Pm Machines Based On Electromagnetic 3d Fea, Narges Taran Jan 2019

Optimum Design Of Axial Flux Pm Machines Based On Electromagnetic 3d Fea, Narges Taran

Theses and Dissertations--Electrical and Computer Engineering

Axial flux permanent magnet (AFPM) machines have recently attracted significant attention due to several reasons, such as their specific form factor, potentially higher torque density and lower losses, feasibility of increasing the number of poles, and facilitating innovative machine structures for emerging applications. One such machine design, which has promising, high efficiency particularly at higher speeds, is of the coreless AFPM type and has been studied in the dissertation together with more conventional AFPM topologies that employ a ferromagnetic core.

A challenge in designing coreless AFPM machines is estimating the eddy current losses. This work proposes a new hybrid analytical …