Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Eicosapentaenoic Acid (Epa) From Porphyridium Cruentum: Increasing Growth And Productivity Of The Microalgae For Pharmaceutical Products, Maryam Asgharpour Dec 2015

Eicosapentaenoic Acid (Epa) From Porphyridium Cruentum: Increasing Growth And Productivity Of The Microalgae For Pharmaceutical Products, Maryam Asgharpour

Graduate Theses and Dissertations

One of the major nutritional requirements in our diet is an adequate intake of omega-3 specially eicosapentaenoic acid (EPA). In the present study, the effects of two temperatures (16°C & 20˚C) and light intensities (140 & 180µE/M2.S) and four nitrate levels (0.075, 0.3, 0.5 and 0.7g/L) on the cell growth and lipid productivity of Porphyridium cruentum, one of the most promising oil-rich species of microalgae, were investigated. A growth comparison was carried out using pure CO2 and 5% CO2/air. Additionally, the ratio of the fatty acids with omega-3 and omega-6 groups at various growth conditions were compared, since an appropriate …


Evapoporometry: An Effective Analytical Technique For Membrane Pore Size Characterization Of Hollow Fiber Membranes, Alex J. Moix Dec 2015

Evapoporometry: An Effective Analytical Technique For Membrane Pore Size Characterization Of Hollow Fiber Membranes, Alex J. Moix

Chemical Engineering Undergraduate Honors Theses

A new analytical technique called evapoporometry has shown to be an effective and inexpensive method for membrane pore size characterization. This technique is based on the correlation between vapor pressure and pore size as described by the Kelvin equation. Evapoporometry has many advantages over tradition pore size characterization techniques. This technique allows for large sample sizes, uses minimal equipment, is capable of analyzing membranes within a wide range of pore sizes, and provides a highly descriptive representation of the pore distribution. This research looks at the application of evapoporometry as a technique for characterization of hollow fiber membranes. Using the …


Separation Of Oil From A Brackish Water Stream, Kayli A. Quinton Dec 2015

Separation Of Oil From A Brackish Water Stream, Kayli A. Quinton

Chemical Engineering Undergraduate Honors Theses

In the past 40 years, a variety of enhanced oil recovery (EOR) methods have been developed and applied to mature and mostly depleted oil reservoirs. Chemical and sonic stimulation are two enhanced oil recovery methods in which emulsions are created either as a primary or secondary effect. The resulting emulsion viscosity is considerably lower than that of dry crude thus increasing permeability of and recovery from pay zones. During Chemical enhanced oil recovery, caustic or preformed surfactants are injected into oil reservoirs, which results in flooding and periodic breakthrough of stable oil-water emulsions. The emulsions from chemical enhanced oil recovery …


Field Amplified Sample Stacking On Amyloid Beta (1-42) Oligomers Using Capillary Electrophoresis, Sadia Ali Paracha Dec 2015

Field Amplified Sample Stacking On Amyloid Beta (1-42) Oligomers Using Capillary Electrophoresis, Sadia Ali Paracha

Graduate Theses and Dissertations

According to recent literature, it is believed that the oligomeric form of amyloid beta (Aβ) is the leading cause of Alzheimer’s disease (1; 8; 10; 12-18). Additionally, recent studies have eluded to the impact of Alzheimer’s disease (AD) both economically and Socially in today’s society where an increase of about 71% of AD related deaths were recorded between 2000 and 2013 (7). Since the oligomeric forms of Aβ vary in size, shape and some believe conformation, it is vital to utilize a separation technique, such as capilllary electrophoresis (CE) to further understand Aβ aggregation. By understanding Aβ aggregation, treatment of …


Effects Of Magnetically Induced Micro-Mixing On Nanofiltration Performance, Guanghui Song Dec 2015

Effects Of Magnetically Induced Micro-Mixing On Nanofiltration Performance, Guanghui Song

Graduate Theses and Dissertations

Nanofiltration (NF) is a relatively new membrane separation process mainly used for removing low molecular weight species from aqueous and non-aqueous solutions. NF membranes suffer from concentration polarization leading to membrane fouling thus compromised membrane performance. Magnetically responsive nanofiltration (NF) membranes functionalized with superparamagnetic nanoparticles (SPNs) attached to the chain ends of grafted polymer nanolayers have been shown to be effective in breaking concentration polarization at the membrane-liquid interface under an appropriate external oscillating magnetic field. Under an oscillating magnetic field, the movement of the polymer chains acts as micro-mixer leading to the suppression of concentration polarization and improved filtration …


Modified Polysulfone Nanofiltration Membrane Synthesis For Hydraulic Fracturing Water Recycle, Blake Alexander Johnson Dec 2015

Modified Polysulfone Nanofiltration Membrane Synthesis For Hydraulic Fracturing Water Recycle, Blake Alexander Johnson

Graduate Theses and Dissertations

The use of hydraulic fracturing has resulted in significant increases in the yield of oil and natural gas, as water pumped into wells at high pressure cracks the formations and releases the hydrocarbons that are locked in the rocks. This process has created large volumes of brackish water that is very difficult to process and is often disposed of into injection wells. Suspended solids and some dissolved solids are more readily removed, but the multivalent ions found in certain salts can precipitate in a well and complicate the reuse of flowback in future hydraulic fracturing operations.

Nanofiltration, a membrane separation …


Production Of Ethanol From Cereal Food Fines Using Dilute-Acid Hydrolysis, Andrew Edward Arnett Dec 2015

Production Of Ethanol From Cereal Food Fines Using Dilute-Acid Hydrolysis, Andrew Edward Arnett

Graduate Theses and Dissertations

Cereal food fines are a leftover by-product from breakfast cereal processing that is typically sold as animal feed or used as a pet food ingredient; however this product could be of greater value as a feedstock for the production of fuel ethanol via fermentation. In order for this material to be fermented it has to be broken down in to simple sugars using hydrolysis. One method of hydrolysis is called dilute-acid hydrolysis, whereby low concentrations of acid are added to the feedstock to facilitate the breaking of chemical bonds. This study investigates the effect of different concentrations of acid to …


Swelling-Etching Characterization Of Copper (I) Oxide - Pdms For The Development Of Micro/Nano - Particles Composite Mems Corrosion Sensor, Abdoul Kader Maiga Jul 2015

Swelling-Etching Characterization Of Copper (I) Oxide - Pdms For The Development Of Micro/Nano - Particles Composite Mems Corrosion Sensor, Abdoul Kader Maiga

Graduate Theses and Dissertations

The primary objective for this thesis is to contribute to the understanding of the oxide removal process for a corrosion sensing device. The goal for designing such a device is for monitoring corrosion on metallic structures. The sensing material (6.35mm x 1mm discs) of the device is composed of copper (I) oxide particles mixed in some polydimethylsiloxane (PDMS). The PDMS, “housing,” is meant for controlling the oxidation rate through the sensing material. A solvent was used to facilitate the etchant diffusion through the PDMS matrix. Toluene and acetic acid were the ideal solvent and etchant, respectively, for carrying out the …


A Computational Study Of The Potential For Lng Tanker Polystyrene Foam Insulation Failure Under Fire Exposure, Jeffrey David Martinez Jul 2015

A Computational Study Of The Potential For Lng Tanker Polystyrene Foam Insulation Failure Under Fire Exposure, Jeffrey David Martinez

Graduate Theses and Dissertations

Liquefied natural gas is shipped across the oceans in large marine carriers. The carriers house the LNG using several different insulation systems. One of these systems involves large aluminum spheres insulated with polystyrene foam. Polystyrene foam is very susceptible to heat degradation. This raised issues as to the extent of possible insulation failure caused by a large ship fire. Experiments were done investigating the nature of polystyrene’s thermal degradation, notably by Brauman, Chen, and Matzinger and Butler. A large scale investigation was also performed by Sandia National Laboratory. However, computational modeling of the degradation was lacking. This work set out …


Using Peptoids To Build Robust, Efficient Microarray Systems, Dhaval Sunil Shah Jul 2015

Using Peptoids To Build Robust, Efficient Microarray Systems, Dhaval Sunil Shah

Graduate Theses and Dissertations

Recent studies have shown microarrays to be indispensable for various biological applications, allowing for high-throughput processing and screening of biological samples such as RNA, DNA, proteins and peptides using a small sample volume (< 1 µL). Peptoids (poly-N-substituted glycine oligomers) can be used as a substitute for antibodies as capture molecules, as well as coatings for slides in antibody microarrays. The ease of synthesis of peptoids, high customizability with desired bioactivity, and speed of synthesis allows us to build a diagnostic system with a large dynamic range that can detect biomolecules from a minimal sample size. In this study, peptoid-based antibody mimics are designed to have both structural and functional features similar to those of antibodies, including a stable constant region (scaffolding) and a variable region for protein recognition. Peptoids previously screened via combinatorial library synthesis to be specific to bind Mdm-2 (mouse double minute 2 homolog) and GST (gluthathione S-transferase), have been synthesized. The protein recognition peptoids have been conjugated to PEG (polyethylene glycol) molecules with modified end groups; an amine group on one end that allows for immobilization and orientation on the slide, and an azide group on the other end that will allow for attachment to the peptoid through “click chemistry”. The number of capture molecules printed on the slides can be increased by making the available surface area of the slide larger via coating with microspheres. We have determined that partially water soluble peptoids that are also helical, can self-assemble into microspheres. Sequences have been developed that can consistently produce uniform microsphere coatings on slides that increase the overall surface area. A high surface area corresponds to a higher number of binding sites, and therefore a more sensitive system. The work done has shown that slides may be successfully coated in order to potentially improve the detection system.


Peptoid-Based Klvff Mimics: A Unique Approach To Alzheimer's Disease, James Phillip Turner Jul 2015

Peptoid-Based Klvff Mimics: A Unique Approach To Alzheimer's Disease, James Phillip Turner

Graduate Theses and Dissertations

Alzheimer’s disease (AD) is the leading form of dementia worldwide. AD patients experience a slow, gradual cognitive decline that includes loss of memory and behavioral stability as the disease progresses. Surprisingly, AD is the sixth leading cause of death in the United States and has had a profound impact on the U.S. economy. Though there are medications to help improve the quality of life of diagnosed patients for a period of time, there is still no cure for AD. AD is characterized by the build-up of amyloid plaques that develop from the aggregation of the amyloid beta protein (Aβ) in …


Characterization Of Nano-Porous Si-Cu Composites To Enhance Lubricant Retention Impacting The Tribological Properties Of Sliding Surfaces, Julius Sheldon Morehead May 2015

Characterization Of Nano-Porous Si-Cu Composites To Enhance Lubricant Retention Impacting The Tribological Properties Of Sliding Surfaces, Julius Sheldon Morehead

Graduate Theses and Dissertations

As the expectations for modern machinery's tribological and thermal performances continue to rise, the retention of lubricant on the contact surfaces of their sliding components becomes an increasingly important issue. Friction and wear cause heat-related failures which lead to catastrophic damage to machinery. Evaporation of a lubricant's volatile constituents as well as lubricant migration leads not only to a reduction in lubricant quantity but also in its quality, thus facilitating component failures. In order to enhance component reliability, the surface should incorporate features that actively retain lubricants. The unique properties of nano-porous topographies such as their high surface area-to-volume ratio …


The Production Of Biobutanol From Biomass Via A Hybrid Biological/Chemical Process, Thomas Melvin Potts May 2015

The Production Of Biobutanol From Biomass Via A Hybrid Biological/Chemical Process, Thomas Melvin Potts

Graduate Theses and Dissertations

Biobutanol use as a fuel began in the late 19th century. Problems remain in economic viability. A review of the state of the art and need for technical advances is presented.

The technical potential of producing biofuel from a naturally occurring macroalgae was studied. The algae grow in Jamaica Bay, New York City, in contaminated water. The process consisted of mechanical harvesting, drying, grinding, and acid hydrolysis to form an algal sugar solution. Clostridium beijerinckii and C. saccharoperbutylacetonicum were used in an acetone butanol ethanol (ABE) fermentation to make butanol. Fermentation was followed by distillation Butanol concentrations during fermentation reached …


Novel Separation Methods Using Electrodialysis/Electrodeionization For Product Recovery And Power Generation, Alexander Miguel Lopez-Rosa May 2015

Novel Separation Methods Using Electrodialysis/Electrodeionization For Product Recovery And Power Generation, Alexander Miguel Lopez-Rosa

Graduate Theses and Dissertations

The use of electrodialytic separations for the purification of products has been a vital technique for the past 50 years in the chemical industry. Originally used for demineralization and desalination, electrodialysis and its counterparts have expanded to assist in product purification, waste and hazard removal, and power generation. This research focused on the development of high purity organic acids purification with low power requirements. Work resulted in the development of a new type of electrodialysis process, specifically the use of ionic liquids as a secondary solvent for the development of dual solvent electrodialysis. Through dual solvent electrodialysis, ions were recovered …


Numerical Modeling Of Fluid Migration In Hydraulically Fractured Formations, Toyin Christie Aseeperi May 2015

Numerical Modeling Of Fluid Migration In Hydraulically Fractured Formations, Toyin Christie Aseeperi

Graduate Theses and Dissertations

Economic production from low permeability shale gas formations has been made possible by the introduction of horizontal drilling and hydraulic fracturing. To ensure that gas production from these formations is optimized and carried out in an environmentally friendly approach, knowledge about the patterns of gas flow in the shale reservoir formation is required. This work presents the development of a shale gas reservoir model for the characterization of flow behavior in hydraulically fractured shale formations. The study also seeks to develop more computationally efficient approaches towards the modeling of complex fracture geometries. The model evaluates the migration patterns of gas …


Comparison Of Low-Temperature Co-Fired Ceramic And Direct Bonded Copper For Single Ended Primary Inductance Topology, Kristopher Cody Johnson May 2015

Comparison Of Low-Temperature Co-Fired Ceramic And Direct Bonded Copper For Single Ended Primary Inductance Topology, Kristopher Cody Johnson

Electrical Engineering Undergraduate Honors Theses

This work examines the thermal dissipation characteristics of Low-Temperature Co-fired Ceramic (LTCC) and Direct Bonded Copper (DBC) with the implementation of a Single Ended Primary Inductance Converter (SEPIC) topology. The advantages and disadvantages of the two substrates will be explored in addition to a description of the design and control of the SEPIC. It will be shown that the DBC implementation is superior with regards to thermal dissipation, but that LTCC has advantages in high- density packaging, RF applications, and embedded components. These substrates and converters provide many advantages in industrial applications that include automotive and grid level implementations. Additional …