Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Novel Locomotion Methods In Magnetic Actuation And Pipe Inspection, Adam Cox Dec 2022

Novel Locomotion Methods In Magnetic Actuation And Pipe Inspection, Adam Cox

Mechanical Engineering Research Theses and Dissertations

There is much room for improvement in tube network inspections of jet aircraft. Often, these inspections are incomplete and inconsistent. In this paper, we develop a Modular Robotic Inspection System (MoRIS) for jet aircraft tube networks and a corresponding kinematic model. MoRIS consists of a Base Station for user control and communication, and robotic Vertebrae for accessing and inspecting the network. The presented and tested design of MoRIS can travel up to 9 feet in a tube network. The Vertebrae can navigate in all orientations, including smooth vertical tubes. The design is optimized for nominal 1.5" outside diameter tubes. We …


Resistive Pulse Sensing Of Protein Unfolding And Transport In Solid-State Nanopores, Jugal Saharia May 2022

Resistive Pulse Sensing Of Protein Unfolding And Transport In Solid-State Nanopores, Jugal Saharia

Mechanical Engineering Research Theses and Dissertations

Solid-state nanopore sensors have attracted considerable attraction as a tool for solution-based single-molecule studies and have been successfully utilized for characterization of biomolecules such as nucleic acids, proteins, glycans, viruses, etc. Among these, characterization of proteins has been more challenging due to their charge heterogeneity and the complex energy landscape associated with different protein conformations. Presented in this thesis is the fabrication of solid-state nanopores and their application for characterizing proteins and understanding their transport through nanopores. Fabrication of nanometer-sized pores in SixNy membranes was achieved using the conventional controlled dielectric breakdown method as well as a …


Closed-Loop Brain-Computer Interfaces For Memory Restoration Using Deep Brain Stimulation, David Xiaoliang Wang May 2022

Closed-Loop Brain-Computer Interfaces For Memory Restoration Using Deep Brain Stimulation, David Xiaoliang Wang

Electrical Engineering Theses and Dissertations

The past two decades have witnessed the rapid growth of therapeutic brain-computer interfaces (BCI) targeting a diversity of brain dysfunctions. Among many neurosurgical procedures, deep brain stimulation (DBS) with neuromodulation technique has emerged as a fruitful treatment for neurodegenerative disorders such as epilepsy, Parkinson's disease, post-traumatic amnesia, and Alzheimer's disease, as well as neuropsychiatric disorders such as depression, obsessive-compulsive disorder, and schizophrenia. In parallel to the open-loop neuromodulation strategies for neuromotor disorders, recent investigations have demonstrated the superior performance of closed-loop neuromodulation systems for memory-relevant disorders due to the more sophisticated underlying brain circuitry during cognitive processes. Our efforts are …


Microparticle Propulsion For In Vivo Navigation, Louis Rogowski Dec 2020

Microparticle Propulsion For In Vivo Navigation, Louis Rogowski

Mechanical Engineering Research Theses and Dissertations

Microscale propulsion impacts a diverse array of fields, with simplistic microrobots allowing for novel innovations in microscale surgery and drug delivery. Propulsion at the microscale is constrained by physics, with time-reversal and geometric symmetries limiting available propulsion mechanisms. However, certain fluid environments and surface coatings allow for the propulsion of microparticles through externally applied magnetic fields. Presented here is a detailed analysis of microparticles propelling using spontaneous symmetry breaking, flagella surface coatings, and multi-modal actuation mechanisms. Spontaneous symmetry breaking in nonlinearly viscoelastic fluids is presented for the first time in literature, with two equal and opposite propulsion states existing along …


Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee Dec 2020

Detection Of Nucleotides In Hydrated Ssdna Via 2-D H-Bn Nanopore With Ionic-Liquid/Salt-Water Interface, Jungsoo Lee

Multidisciplinary Studies Theses and Dissertations

Accomplishing slow translocation speed with high sensitivity has been the greatest mission for solid-state nanopore (SSN) to electrically detect nucleobases in single-stranded DNA (ssDNA). In this study, a method to detect nucleobases in ssDNA using a SSN is introduced by considerably slowing down the translocation speed and effectively increasing its sensitivity. The ultra-thin titanium dioxide (TiO2) coated hexagonal boron nitride (h-BN) nanopore was fabricated, along with an ionic-liquid [bmim][PF6]/2.0 M KCl aqueous (cis/trans) interfacial system, to increase both the spatial and the temporal resolutions. As the ssDNA molecules entered the nanopore, a …


Control And Locomotion Of Inertially And Magnetically Actuated Multi-Scale Robotic Systems, Ehab Al Khatib May 2020

Control And Locomotion Of Inertially And Magnetically Actuated Multi-Scale Robotic Systems, Ehab Al Khatib

Mechanical Engineering Research Theses and Dissertations

In this research, two actuation systems were introduced, inertial and magnetic actuation. In the inertial actuation, the robot used the transfer of momentum to navigate, and this momentum could be generated by spinning masses and wheels. Recent studies in our System Laboratory proved that a wide range of inertially actuated locomotion systems could be generated. This can be achieved by using a family tree approach, starting from a very simple system, and progressively evolving it to more complex ones. The motion diversity of these robots inspired us to extend their locomotion from a macro scale to millimeter and micro scales. …


Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar Jul 2019

Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar

Mechanical Engineering Research Theses and Dissertations

Dielectric properties of biological cells are functions of cellular structure, content, state, and phenotype. Dielectric spectroscopy (DS) is a nondestructive method to characterize dielectric properties by measuring impedance data over a frequency range. This method has been widely used for various applications such as counting, sizing, and monitoring biological cells and particles. Recently, this method has been suggested to be utilized in various stages of the drug discovery process due to its low sample consumption and fast analysis time.

In this thesis, we have developed a lab-on-a-chip device that uses an electro-activated microwells array for capturing, making DS measurements on, …