Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Artificial Intelligence and Robotics

University of Arkansas, Fayetteville

Neural Networks

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Analog Spiking Neural Network Implementing Spike Timing-Dependent Plasticity On 65 Nm Cmos, Luke Vincent May 2021

Analog Spiking Neural Network Implementing Spike Timing-Dependent Plasticity On 65 Nm Cmos, Luke Vincent

Graduate Theses and Dissertations

Machine learning is a rapidly accelerating tool and technology used for countless applications in the modern world. There are many digital algorithms to deploy a machine learning program, but the most advanced and well-known algorithm is the artificial neural network (ANN). While ANNs demonstrate impressive reinforcement learning behaviors, they require large power consumption to operate. Therefore, an analog spiking neural network (SNN) implementing spike timing-dependent plasticity is proposed, developed, and tested to demonstrate equivalent learning abilities with fractional power consumption compared to its digital adversary.


Low-Power And Reconfigurable Asynchronous Asic Design Implementing Recurrent Neural Networks, Spencer Nelson May 2021

Low-Power And Reconfigurable Asynchronous Asic Design Implementing Recurrent Neural Networks, Spencer Nelson

Graduate Theses and Dissertations

Artificial intelligence (AI) has experienced a tremendous surge in recent years, resulting in high demand for a wide array of implementations of algorithms in the field. With the rise of Internet-of-Things devices, the need for artificial intelligence algorithms implemented in hardware with tight design restrictions has become even more prevalent. In terms of low power and area, ASIC implementations have the best case. However, these implementations suffer from high non-recurring engineering costs, long time-to-market, and a complete lack of flexibility, which significantly hurts their appeal in an environment where time-to-market is so critical. The time-to-market gap can be shortened through …


Nonlinear Dimensionality Reduction For The Thermodynamics Of Small Clusters Of Particles, Aditya Dendukuri Jul 2020

Nonlinear Dimensionality Reduction For The Thermodynamics Of Small Clusters Of Particles, Aditya Dendukuri

Graduate Theses and Dissertations

This work employs tools and methods from computer science to study clusters comprising a small number N of interacting particles, which are of interest in science, engineering, and nanotechnology. Specifically, the thermodynamics of such clusters is studied using techniques from spectral graph theory (SGT) and machine learning (ML). SGT is used to define the structure of the clusters and ML is used on ensembles of cluster configurations to detect state variables that can be used to model the thermodynamic properties of the system. While the most fundamental description of a cluster is in 3N dimensions, i.e., the Cartesian coordinates of …