Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals Jan 2022

Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals

Faculty Publications

Land-cover and land-use classification generates categories of terrestrial features, such as water or trees, which can be used to track how land is used. This work applies classical, ensemble and neural network machine learning algorithms to a multispectral remote sensing dataset containing 405,000 28x28 pixel image patches in 4 electromagnetic frequency bands. For each algorithm, model metrics and prediction execution time were evaluated, resulting in two families of models; fast and precise. The prediction time for an 81,000-patch group of predictions wasmodels, and >5s for the precise models, and there was not a significant change in prediction time when a …


Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li Jan 2022

Arithfusion: An Arithmetic Deep Model For Temporal Remote Sensing Image Fusion, Md Reshad Ul Hoque, Jian Wu, Chiman Kwan, Krzysztof Koperski, Jiang Li

Electrical & Computer Engineering Faculty Publications

Different satellite images may consist of variable numbers of channels which have different resolutions, and each satellite has a unique revisit period. For example, the Landsat-8 satellite images have 30 m resolution in their multispectral channels, the Sentinel-2 satellite images have 10 m resolution in the pan-sharp channel, and the National Agriculture Imagery Program (NAIP) aerial images have 1 m resolution. In this study, we propose a simple yet effective arithmetic deep model for multimodal temporal remote sensing image fusion. The proposed model takes both low- and high-resolution remote sensing images at t1 together with low-resolution images at a …


Sparse Coding Based Dense Feature Representation Model For Hyperspectral Image Classification, Ender Oguslu, Guoqing Zhou, Zezhong Zheng, Khan Iftekharuddin, Jiang Li Jan 2015

Sparse Coding Based Dense Feature Representation Model For Hyperspectral Image Classification, Ender Oguslu, Guoqing Zhou, Zezhong Zheng, Khan Iftekharuddin, Jiang Li

Electrical & Computer Engineering Faculty Publications

We present a sparse coding based dense feature representation model (a preliminary version of the paper was presented at the SPIE Remote Sensing Conference, Dresden, Germany, 2013) for hyperspectral image (HSI) classification. The proposed method learns a new representation for each pixel in HSI through the following four steps: sub-band construction, dictionary learning, encoding, and feature selection. The new representation usually has a very high dimensionality requiring a large amount of computational resources. We applied the l1/lq regularized multiclass logistic regression technique to reduce the size of the new representation. We integrated the method with a linear …


Modeling Acoustic Scattering From The Seabed Using Transport Theory, Jorge Quijano, Lisa M. Zurk Sep 2010

Modeling Acoustic Scattering From The Seabed Using Transport Theory, Jorge Quijano, Lisa M. Zurk

Electrical and Computer Engineering Faculty Publications and Presentations

Radiative Transfer (RT) theory has established itself as an important tool for electromagnetic remote sensing in parallel plane geometries with random distributions of scatterers, and most recently it has also been proposed as a model for the propagation of elastic waves in layered ocean sediments. In this work the capabilities of this model are illustrated, as the RT method is used to predict backscattering strength from laboratory models of random media. The RT model is characterized by its flexibility on accommodating scatterers in a broad variety of sizes, shapes, and acoustic contrast relative to the background media. Additionally, this formulation …


Vegetation Identification Based On Satellite Imagery, Vamsi K.R. Mantena, Ramu Pedada, Srinivas Jakkula, Yuzhong Shen, Jiang Li, Hamid R. Arabnia (Ed.) Jan 2008

Vegetation Identification Based On Satellite Imagery, Vamsi K.R. Mantena, Ramu Pedada, Srinivas Jakkula, Yuzhong Shen, Jiang Li, Hamid R. Arabnia (Ed.)

Electrical & Computer Engineering Faculty Publications

Automatic vegetation identification plays an important role in many applications including remote sensing and high performance flight simulations. This paper presents a method to automatically identify vegetation based upon satellite imagery. First, we utilize the ISODATA algorithm to cluster pixels in the images where the number of clusters is determined by the algorithm. We then apply morphological operations to the clustered images to smooth the boundaries between clusters and to fill holes inside clusters. After that, we compute six features for each cluster. These six features then go through a feature selection algorithm and three of them are determined to …


Seasonal Adaptation Of Vegetation Color In Satellite Images, Srinivas Jakkula, Vamsi K.R. Mantena, Ramu Pedada, Yuzhong Shen, Jiang Li, Hamid R. Arabnia (Ed.) Jan 2008

Seasonal Adaptation Of Vegetation Color In Satellite Images, Srinivas Jakkula, Vamsi K.R. Mantena, Ramu Pedada, Yuzhong Shen, Jiang Li, Hamid R. Arabnia (Ed.)

Electrical & Computer Engineering Faculty Publications

Remote sensing techniques like NDVI (Normal Difference vegetative Index) when applied to phenological variations in aerial images, ascertained the seasonal rise and decline of photosynthetic activity in different seasons, resulting in different color tones of vegetation. The rise and fall of NDVI values decide the biological response, either the green up or brown down [1]. Vegetation in green up period appears with more vegetative vigor and during brown down period it has a dry appearance. This paper proposes a novel method that identifies vegetative patterns in satellite images and then alters vegetation color to simulate seasonal changes based on training …


Manipulation Of High Spatial Resolution Aircraft Remote Sensing Data For Use In Site-Specific Farming, Gabriel B. Senay, Andrew D. Ward, John G. Lyon, Norman R. Fausey, Sue E. Nokes Mar 1998

Manipulation Of High Spatial Resolution Aircraft Remote Sensing Data For Use In Site-Specific Farming, Gabriel B. Senay, Andrew D. Ward, John G. Lyon, Norman R. Fausey, Sue E. Nokes

Biosystems and Agricultural Engineering Faculty Publications

Three spatial data sets consisting of high spatial resolution (1 m) remote sensing images acquired in 12 spectral bands, an on-the-go yield map, and a Digital Elevation Model were co-registered and evaluated for spatial variability studies in a Geographic Information Systems environment. Separate on-the-go yield maps were developed for 3, 5, and 12 statistically significant mean yield classes. For each yield class, the corresponding mean spectral and elevation data were extracted. The relationship between mean spectral and yield data was strongly linear (r = 0.99). Also, a strong linear relationship between mean yield and elevation data (r = 0.92) was …