Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2023

Machine Learning

Discipline
Institution
Publication

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Machine Learning Prediction Of Hea Properties, Nicholas J. Beaver, Nathaniel Melisso, Travis Murphy Oct 2023

Machine Learning Prediction Of Hea Properties, Nicholas J. Beaver, Nathaniel Melisso, Travis Murphy

College of Engineering Summer Undergraduate Research Program

High-entropy alloys (HEA) are a very new development in the field of metallurgical materials. They are made up of multiple principle atoms unlike traditional alloys, which contributes to their high configurational entropy. The microstructure and properties of HEAs are are not well predicted with the models developed for more common engineering alloys, and there is not enough data available on HEAs to fully represent the complex behavior of these alloys. To that end, we explore how the use of machine learning models can be used to model the complex, high dimensional behavior in the HEA composition space. Based on our …


Predicting Dynamic Fragmentation Characteristics From High-Impact Energy Events Utilizing Terrestrial Static Arena Test Data And Machine Learning, Katharine Larsen, Riccardo Bevilacqua, Omkar S. Mulekar, Elisabetta L. Jerome, Thomas J. Hatch-Aguilar Aug 2023

Predicting Dynamic Fragmentation Characteristics From High-Impact Energy Events Utilizing Terrestrial Static Arena Test Data And Machine Learning, Katharine Larsen, Riccardo Bevilacqua, Omkar S. Mulekar, Elisabetta L. Jerome, Thomas J. Hatch-Aguilar

Student Works

To continue space operations with the increasing space debris, accurate characterization of fragment fly-out properties from hypervelocity impacts is essential. However, with limited realistic experimentation and the need for data, available static arena test data, collected utilizing a novel stereoscopic imaging technique, is the primary dataset for this paper. This research leverages machine learning methodologies to predict fragmentation characteristics using combined data from this imaging technique and simulations, produced considering dynamic impact conditions. Gaussian mixture models (GMMs), fit via expectation maximization (EM), are used to model fragment track intersections on a defined surface of intersection. After modeling the fragment distributions, …


Generalization Through Diversity: Improving Unsupervised Environment Design, Wenjun Li, Pradeep Varakantham, Dexun Li Aug 2023

Generalization Through Diversity: Improving Unsupervised Environment Design, Wenjun Li, Pradeep Varakantham, Dexun Li

Research Collection School Of Computing and Information Systems

Agent decision making using Reinforcement Learning (RL) heavily relies on either a model or simulator of the environment (e.g., moving in an 8x8 maze with three rooms, playing Chess on an 8x8 board). Due to this dependence, small changes in the environment (e.g., positions of obstacles in the maze, size of the board) can severely affect the effectiveness of the policy learned by the agent. To that end, existing work has proposed training RL agents on an adaptive curriculum of environments (generated automatically) to improve performance on out-of-distribution (OOD) test scenarios. Specifically, existing research has employed the potential for the …


Predicting Corrosion Damage In The Human Body Using Artificial Intelligence: In Vitro Progress And Future Applications Applications, Michael A. Kurtz, Ruoyu Yang, Mohan S. R. Elapolu, Audrey C. Wessinger, William Nelson, Kazzandra Alaniz, Rahul Rai, Jeremy L. Gilbert Jul 2023

Predicting Corrosion Damage In The Human Body Using Artificial Intelligence: In Vitro Progress And Future Applications Applications, Michael A. Kurtz, Ruoyu Yang, Mohan S. R. Elapolu, Audrey C. Wessinger, William Nelson, Kazzandra Alaniz, Rahul Rai, Jeremy L. Gilbert

Publications

Artificial intelligence (AI) is used in the clinic to improve patient care. While the successes illustrate the impact AI can have, few studies have led to improved clinical outcomes. A gap in translational studies, beginning at the basic science level, exists. In this review, we focus on how AI models implemented in non-orthopedic fields of corrosion science may apply to the study of orthopedic alloys. We first define and introduce fundamental AI concepts and models, as well as physiologically relevant corrosion damage modes. We then systematically review the corrosion/AI literature. Finally, we identify several AI models that may be Preprint …


Asset Cueing Nuclear Radiation Anomaly Detection Using An Embedded Neural Network Resource, April Inamura Jul 2023

Asset Cueing Nuclear Radiation Anomaly Detection Using An Embedded Neural Network Resource, April Inamura

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Nuclear radiation detection is inherently a challenging task, coupled with a high background variation or increase in anomalies, the accuracy for detection can plummet. A key factor in the success of nuclear detection hinges on the sensor’s ability to generalize its model and directly leads to the model’s robustness. The goal of this project is to develop algorithms suitable for use on the University of Nebraska-Lincoln’s Pingora chip, a low-power, system-on-chip device with an active neural processing unit (NPU) made for nuclear radiation detection. The thesis aims to improve Pingora’s overall generalization ability in nuclear radiation source detection. A multiphase …


Probabilistic Machine Learning For Battery State Of Health Prognostics, Charli Zaretsky May 2023

Probabilistic Machine Learning For Battery State Of Health Prognostics, Charli Zaretsky

Honors Scholar Theses

The ability to understand and predict the state of health (SOH) of lithium-ion batteries is an integral component of their widespread commercial use. There are various methods through which SOH can be analyzed and predicted, and this paper discusses these different methods, and the strengths and weaknesses of each. This paper also details an analysis of lithium-ion battery SOH through two data-driven machine learning methods: XGBoost and Gaussian process regression. A comparison is made between each method’s accuracy in predicting next-cycle discharge capacity using electrochemical impedance spectroscopy (EIS) readings and battery charge and discharge rates, from a dataset given in …


Estimating Crop Stomatal Conductance Through High-Throughput Plant Phenotyping, Junxiao Zhang Apr 2023

Estimating Crop Stomatal Conductance Through High-Throughput Plant Phenotyping, Junxiao Zhang

Department of Biological Systems Engineering: Dissertations and Theses

During photosynthesis and transpiration, crops exchange carbon dioxide and water with the atmosphere through stomata. When a crop experiences water stress, stomata are closed to reducing water loss. However, the closing of stomata also negatively affects the photosynthetic efficiency of the crop and leads to lower yields. Stomatal conductance (gs) quantifies the degree of stomatal opening and closing by using the rate of gas exchange between the crop and the atmosphere, which helps to understand the water status of the crop for better irrigation management. Unfortunately, gs measurement typically requires contact measuring instruments and manual collection in the field, which …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Evaluation Of Liquid Loading In Gas Wells Using Machine Learning, Abderraouf Chemmakh, Olusegun Stanley Tomomewo, Kegang Ling, Ahmed Shammari Feb 2023

Evaluation Of Liquid Loading In Gas Wells Using Machine Learning, Abderraouf Chemmakh, Olusegun Stanley Tomomewo, Kegang Ling, Ahmed Shammari

Petroleum Engineering Student Publications

The inevitable result that gas wells witness during their life production is the liquid loading problem. The liquids that come with gas block the production tubing if the gas velocity supplied by the reservoir pressure is not enough to carry them to surface. Researchers used different theories to solve the problem naming, droplet fallback theory, liquid film reversal theory, characteristic velocity, transient simulations, and others. While there is no definitive answer on what theory is the most valid or the one that performs the best in all cases. This paper comes to involve a different approach, a combination between physics-based …


Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha Feb 2023

Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha

Faculty Publications

The rapidly increasing number of drones in the national airspace, including those for recreational and commercial applications, has raised concerns regarding misuse. Autonomous drone detection systems offer a probable solution to overcoming the issue of potential drone misuse, such as drug smuggling, violating people’s privacy, etc. Detecting drones can be difficult, due to similar objects in the sky, such as airplanes and birds. In addition, automated drone detection systems need to be trained with ample amounts of data to provide high accuracy. Real-time detection is also necessary, but this requires highly configured devices such as a graphical processing unit (GPU). …


A Framework For Teaching Machine Learning For Engineers, Lauren Singelmann, Jacob Covarrubias Jan 2023

A Framework For Teaching Machine Learning For Engineers, Lauren Singelmann, Jacob Covarrubias

Practice Papers

As machine learning and artificial intelligence become increasingly prevalent in our day-to-day lives, there becomes an even greater need for literacy in machine learning for those outside of the computer science domain. This work proposes a conceptual framework for teaching machine learning to engineering students with the goal of developing the knowledge and skills needed to apply machine learning techniques to engineering problems.

Many machine learning courses in computer science, math, and statistics focus on the theoretical basis of machine learning algorithms and assessment. This framework takes a fundamentally different approach by creating a course structure for machine learning practitioners …


Decoupling Optimization For Complex Pdn Structures Using Deep Reinforcement Learning, Ling Zhang, Li Jiang, Jack Juang, Zhiping Yang, Er Ping Li, Chulsoon Hwang Jan 2023

Decoupling Optimization For Complex Pdn Structures Using Deep Reinforcement Learning, Ling Zhang, Li Jiang, Jack Juang, Zhiping Yang, Er Ping Li, Chulsoon Hwang

Electrical and Computer Engineering Faculty Research & Creative Works

This Article Presents a New Optimization Method for Complex Power Distribution Networks (PDNs) with Irregular Shapes and Multilayer Structures using Deep Reinforcement Learning (DRL), Which Has Not Been Considered Before. a Fast Boundary Integration Method is Applied to Compute the Impedance Matrix of a PDN Structure. Subsequently, a New DRL Algorithm based on Proximal Policy Optimization (PPO) is Proposed to Optimize the Decoupling Capacitor (Decap) Placement by Minimizing the Number of Decaps While Satisfying the Desired Target Impedance. in the Proposed Approach, the PDN Structure Information is Encoded into Matrices and Serves as the Input of the DRL Algorithm, Which …


Quantum Classifiers For Video Quality Delivery, Tautvydas Lisas, Ruairí De Fréin Jan 2023

Quantum Classifiers For Video Quality Delivery, Tautvydas Lisas, Ruairí De Fréin

Conference papers

Classical classifiers such as the Support Vector Classifier (SVC) struggle to accurately classify video Quality of Delivery (QoD) time-series due to the challenge in constructing suitable decision boundaries using small amounts of training data. We develop a technique that takes advantage of a quantum-classical hybrid infrastructure called Quantum-Enhanced Codecs (QEC). We evaluate a (1) purely classical, (2) hybrid kernel, and (3) purely quantum classifier for video QoD congestion classification, where congestion is either low, medium or high, using QoD measurements from a real networking test-bed. Findings show that the SVC performs the classification task 4% better in the low congestion …


Toward Inclusive Online Environments: Counterfactual-Inspired Xai For Detecting And Interpreting Hateful And Offensive Tweets, Muhammad Deedahwar Mazhar Qureshi, Muhammad Atif Qureshi, Wael Rashwan Jan 2023

Toward Inclusive Online Environments: Counterfactual-Inspired Xai For Detecting And Interpreting Hateful And Offensive Tweets, Muhammad Deedahwar Mazhar Qureshi, Muhammad Atif Qureshi, Wael Rashwan

Articles

The prevalence of hate speech and offensive language on social media platforms such as Twitter has significant consequences, ranging from psychological harm to the polarization of societies. Consequently, social media companies have implemented content moderation measures to curb harmful or discriminatory language. However, a lack of consistency and transparency hinders their ability to achieve desired outcomes. This article evaluates various ML models, including an ensemble, Explainable Boosting Machine (EBM), and Linear Support Vector Classifier (SVC), on a public dataset of 24,792 tweets by T. Davidson, categorizing tweets into three classes: hate, offensive, and neither. The top-performing model achieves a weighted …


Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick Jan 2023

Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick

Systems Science Faculty Publications and Presentations

This research applies machine learning methods to build predictive models of Net Load Imbalance for the Resource Sufficiency Flexible Ramping Requirement in the Western Energy Imbalance Market. Several methods are used in this research, including Reconstructability Analysis, developed in the systems community, and more well-known methods such as Bayesian Networks, Support Vector Regression, and Neural Networks. The aims of the research are to identify predictive variables and obtain a new stand-alone model that improves prediction accuracy and reduces the INC (ability to increase generation) and DEC (ability to decrease generation) Resource Sufficiency Requirements for Western Energy Imbalance Market participants. This …


Analyzing Ground Motion Records With Cvi Fuzzy Art, Dustin Tanksley, Xinzhe Yuan, Genda Chen, Donald C. Wunsch Jan 2023

Analyzing Ground Motion Records With Cvi Fuzzy Art, Dustin Tanksley, Xinzhe Yuan, Genda Chen, Donald C. Wunsch

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This paper explores using Cluster Validity Indices Fuzzy Adaptative Resonance Theory (CVI Fuzzy ART) to cluster ground motion records (GMRs). Clustering the features extracted from a supervised network trained for predicting the structure damage results in less overfitting from the trained network. Using Cluster Validity Indices (CVIs) to evaluate the clustering gives feedback to how well the data is being classified, allowing further separation of the data. By using CVI Fuzzy ART in combination with features extracted from a trained Convolutional Neural Network (CNN), we were able to form additional clusters in the data. Within the primary clusters, accuracy was …


A Comparison Of Feature Selection Methodologies And Learning Algorithms In The Development Of A Dna Methylation-Based Telomere Length Estimator, Trevor Doherty, Emma Dempster, Eilis Hannon, Jonathan Mill, Richie Poulton, David Corcoran, Karen Sugden, Ben Williams, Avshalom Caspi, Terrie E. Moffitt, Sarah Jane Delany, Therese Murphy Dr Jan 2023

A Comparison Of Feature Selection Methodologies And Learning Algorithms In The Development Of A Dna Methylation-Based Telomere Length Estimator, Trevor Doherty, Emma Dempster, Eilis Hannon, Jonathan Mill, Richie Poulton, David Corcoran, Karen Sugden, Ben Williams, Avshalom Caspi, Terrie E. Moffitt, Sarah Jane Delany, Therese Murphy Dr

Articles

The field of epigenomics holds great promise in understanding and treating disease with advances in machine learning (ML) and artificial intelligence being vitally important in this pursuit. Increasingly, research now utilises DNA methylation measures at cytosine–guanine dinucleotides (CpG) to detect disease and estimate biological traits such as aging. Given the challenge of high dimensionality of DNA methylation data, feature-selection techniques are commonly employed to reduce dimensionality and identify the most important subset of features. In this study, our aim was to test and compare a range of feature-selection methods and ML algorithms in the development of a novel DNA methylation-based …