Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2022

Nanoparticles

Discipline
Institution
Publication

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Controlling Differentiation Of Adult Stem Cells Via Cell-Derived Nanoparticles: Implications In Bone Repair, Shruthi Polla Ravi, Yasmeen Shamiya, Aishik Chakraborty, Ali Coyle, Alap A. Zahid, Jin Wang, Michael Boutilier, Emmanuel Ho, Arghya Paul Dec 2022

Controlling Differentiation Of Adult Stem Cells Via Cell-Derived Nanoparticles: Implications In Bone Repair, Shruthi Polla Ravi, Yasmeen Shamiya, Aishik Chakraborty, Ali Coyle, Alap A. Zahid, Jin Wang, Michael Boutilier, Emmanuel Ho, Arghya Paul

Chemical and Biochemical Engineering Publications

No abstract provided.


Passive Cooling Analysis Of An Electronic Chipset Using Nanoparticles And Metal-Foam Composite Pcm: An Experimental Study, Faisal Hassan, Abid Hussain, Furqan Jamil, Adeel Arshad, Hafiz Muhammad Ali Nov 2022

Passive Cooling Analysis Of An Electronic Chipset Using Nanoparticles And Metal-Foam Composite Pcm: An Experimental Study, Faisal Hassan, Abid Hussain, Furqan Jamil, Adeel Arshad, Hafiz Muhammad Ali

Research outputs 2022 to 2026

Thermal management of electronic components is critical for long-term reliability and continuous operation, as the over-heating of electronic equipment leads to decrement in performance. The novelty of the current experimental study is to investigate the passive cooling of electronic equipment, by using nano-enriched phase change material (NEPCM) with copper foam having porosity of 97 %. The phase change material of PT-58 was used with graphene nanoplatelets (GNPs) and magnesium oxide (MgO) nanoparticles (NPs), having concentrations of 0.01 wt. % and 0.02 wt. %. Three power levels of 8 W, 16 W, and 24 W, with corresponding heating inputs of 0.77 …


Insight Into Nano-Chemical Enhanced Oil Recovery From Carbonate Reservoirs Using Environmentally Friendly Nanomaterials, Ali Ahmadi, Abbas Khaksar Manshad, Jagar A. Ali, Stefan Iglauer, S. Mohammad Sajadi, Alireza Keshavarz, Amir H. Mohammadi Oct 2022

Insight Into Nano-Chemical Enhanced Oil Recovery From Carbonate Reservoirs Using Environmentally Friendly Nanomaterials, Ali Ahmadi, Abbas Khaksar Manshad, Jagar A. Ali, Stefan Iglauer, S. Mohammad Sajadi, Alireza Keshavarz, Amir H. Mohammadi

Research outputs 2022 to 2026

The use of nanoparticles (NPs) in enhanced oil recovery (EOR) processes is very effective in reducing the interfacial tension (IFT) and surface tension (ST) and altering the wettability of reservoir rocks. The main purpose of this study was to use the newly synthesized nanocomposites (KCl / SiO2 / Xanthan NCs) in EOR applications. Several analytical techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) were applied to confirm the validity of the synthesized NCs. From the synthesized NCs, nanofluids were prepared at different concentrations of 100-2000 ppm and characterized using electrical conductivity, IFT, …


Zinc–Acetate–Amine Complexes As Precursors To Zno And The Effect Of The Amine On Nanoparticle Morphology, Size, And Photocatalytic Activity, Josh Eixenberger, David Estrada Oct 2022

Zinc–Acetate–Amine Complexes As Precursors To Zno And The Effect Of The Amine On Nanoparticle Morphology, Size, And Photocatalytic Activity, Josh Eixenberger, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)2(amine)x] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions produced micron-scale particles with morphologies of hexagonal plates, rods, and needles, depending on the precursor used. Powders prepared at 65 °C with rapid precipitation yielded particles with minimal morphology differences, but particle size was dependent on the precursor used. The smallest particles were produced using precursors that yielded crystals with low aspect ratios during high-temperature synthesis. Particles …


Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf Sep 2022

Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf

Faculty Publications

Consolidation of pure molybdenum through laser powder bed fusion and other additive manufacturing techniques is complicated by a high melting temperature, thermal conductivity and ductile-to-brittle transition temperature. Nano-sized SiC particles (0.1 wt%) were homogeneously mixed with molybdenum powder and the printing characteristics, chemical composition, microstructure, mechanical properties were compared to pure molybdenum for scan speeds of 100, 200, 400, and 800 mm/s. The addition of SiC improved the optically determined density and flexural strength at 400 mm/s by 92% and 80%, respectively. The oxygen content was reduced by an average of 52% over the four scan speeds analyzed. Two mechanisms …


Laser-Induced Galfenol Embedded Multi-Layer Graphene-Oxide In Solution, Devyn Duryea, Nirmala Kandadai Sep 2022

Laser-Induced Galfenol Embedded Multi-Layer Graphene-Oxide In Solution, Devyn Duryea, Nirmala Kandadai

Electrical and Computer Engineering Faculty Publications and Presentations

The proposed work demonstrates the direct synthesis of nanomaterial-embedded laser-induced few-layer graphene-oxide by directly ablating galfenol in a water-based solution for the first time. Laser-induced multilayer graphene-oxide (GO) embedded with galfenol (gallium–iron alloy) nanoparticles (NPs) is created through a method of direct laser inscription of bulk galfenol in deionized (DI) water with femtosecond laser ablation. The NP-embedded GO is achieved by irradiating a near-infrared (near-IR) femtosecond laser at 1040 nm on a bulk galfenol material submerged in a solution comprising DI water and a small concentration (5%/wt.) of polyvinylpyrrolidone followed by a second ablation in pure DI water. Results show …


Understanding The Role Of Antioxidant Nanoparticles In Improving The Outcome Of Secondary Injury In Traumatic Brain Injury, Aria W. Tarudji Jul 2022

Understanding The Role Of Antioxidant Nanoparticles In Improving The Outcome Of Secondary Injury In Traumatic Brain Injury, Aria W. Tarudji

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Following traumatic brain injury (TBI), excess reactive oxygen species (ROS) and other free radicals are released, inducing the cascade of secondary injury that exacerbate the outcomes of TBI. Antioxidant nanoparticles (ANPs) have shown promising outcomes in reducing the progression of TBI, which may be due to the higher accumulation and retention of ANPs in the injured brain. However, there is limited knowledge of: 1) antioxidant activities needed in TBI treatment, 2) correlation between longer retention, bioavailability, and target engagement with antioxidant treatments, and 3) sexual dimorphism to ANP treatments.

This dissertation assesses multiple ANPs with various scavenging activities and durations …


Antimicrobial Mechanisms Of Biomaterials: From Macro To Nano, Shounak Roy, Sanchita Sarkhel, Deepali Bisht, Samerender Nagam Hanumantharao, Smitha Rao, Amit Jaiswal Jun 2022

Antimicrobial Mechanisms Of Biomaterials: From Macro To Nano, Shounak Roy, Sanchita Sarkhel, Deepali Bisht, Samerender Nagam Hanumantharao, Smitha Rao, Amit Jaiswal

Michigan Tech Publications

Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the development of next-generation antimicrobials. The rapid emergence of multi-drug resistant microbes, superbugs and mutated strains of viruses have fueled the search for new and alternate antimicrobial agents with broad-spectrum biocidal activity. Biomaterials, ranging from macroscopic polymers, proteins, and peptides to nanoscale materials such as nanoparticles, nanotubes and nanosheets have emerged as effective antimicrobials. An extensive body of research has established the antibacterial and antiviral efficiencies of different types of biomaterials. …


Mechanical Properties Of Nanoparticles In The Drug Delivery Kinetics, Kaivon Assani, Amy Neidhard-Doll, Tarun Goswami May 2022

Mechanical Properties Of Nanoparticles In The Drug Delivery Kinetics, Kaivon Assani, Amy Neidhard-Doll, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

Nanoparticle formulation is a recently developed drug delivery technology with enhanced targeting potential. Nanoparticles encapsulate the drug of choice and delivers it to the target via a targeting molecules (ex. antigen) located on the nanoparticle surface. Nanoparticles can even be targeted to deeply penetrating tissue and can be modeled to deliver drugs through the blood brain barrier. These advancements are providing better disease targeting such as to cancer and Alzheimer’s. Various polymers can be manufactured into nanoparticles. The polymers examined in this paper are polycaprolactone (PCL), poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and poly(glycolic acid) (PGA). The purpose of this …


Nanoparticulate Carriers For Drug Delivery, Samantha Lokelani Crossen, Tarun Goswami Apr 2022

Nanoparticulate Carriers For Drug Delivery, Samantha Lokelani Crossen, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

Drug delivery with nanoparticulate carriers is a new and upcoming research area that is making major changes within the pharmaceutical industry. Nanoparticulate carriers are discussed, particularly, engineered nanoparticulate carriers used as drug delivery systems for targeted delivery. Nanoparticulate carriers that are used for drug delivery systems include polymers, micelles, dendrimers, liposomes, ceramics, metals, and various forms of biological materials. The properties of these nanoparticulate carriers are very advantageous for targeted drug delivery and result in efficient drug accumulation at the targeted area of interest, reduced drug toxicity, reduced systemic side effects, and more efficient use of the drug overall. Nanoparticlulate …


Water Chemistry, Exposure Routes, And Metal Forms Determine The Bioaccumulation Dynamics Of Silver (Ionic And Nanoparticulate) In Daphnia Magna, Emma Lesser, Fatima Noor Sheikh, Mithun Sikder, Marie Noële Croteau, Natasha Franklin, Mohammed Baalousha, Niveen S. Ismail Mar 2022

Water Chemistry, Exposure Routes, And Metal Forms Determine The Bioaccumulation Dynamics Of Silver (Ionic And Nanoparticulate) In Daphnia Magna, Emma Lesser, Fatima Noor Sheikh, Mithun Sikder, Marie Noële Croteau, Natasha Franklin, Mohammed Baalousha, Niveen S. Ismail

Engineering: Faculty Publications

Treatment wetlands utilize various physical and biological processes to reduce levels of organic contaminants, metals, bacteria, and suspended solids. Silver nanoparticles (AgNPs) are one type of contaminant that can enter treatment wetlands and impact the overall treatment efficacy. Grazing by filter-feeding zooplankton, such as Daphnia magna, is critical to treatment wetland functioning; but the effects of AgNPs on zooplankton are not fully understood, especially at environmentally relevant concentrations. We characterized the bioaccumulation kinetics of dissolved and nanoparticulate (citrate-coated) 109Ag in D. magna exposed to environmentally relevant 109Ag concentrations (i.e., 0.2–23 nmol L−1 Ag) using a stable isotope as a tracer …


Recent Advances In Carbon Dioxide Geological Storage, Experimental Procedures, Influencing Parameters, And Future Outlook, Muhammad Ali, Nilesh Kumar Jha, Nilanjan Pal, Alireza Keshavarz, Hussein Hoteit, Mohammad Sarmadivaleh Feb 2022

Recent Advances In Carbon Dioxide Geological Storage, Experimental Procedures, Influencing Parameters, And Future Outlook, Muhammad Ali, Nilesh Kumar Jha, Nilanjan Pal, Alireza Keshavarz, Hussein Hoteit, Mohammad Sarmadivaleh

Research outputs 2022 to 2026

The oxidation of fossil fuels produces billions of tons of anthropogenic carbon dioxide (CO2) emissions from stationary and nonstationary sources per annum, contributing to global warming. The natural carbon cycle consumes a portion of CO2 emissions from the atmosphere. In contrast, substantial CO2 emissions accumulate, making it the largest contributor to greenhouse gas emissions and causing a rise in the planet's temperature. The Earth's temperature was estimated to be 1 °C higher in 2017 compared to the mid-twentieth century. A solution to this problem is CO2 storage in underground formations, abundant throughout the world. Millions …


Chromium-Resistant Staphylococcus Aureus Alleviates Chromium Toxicity By Developing Synergistic Relationships With Zinc Oxide Nanoparticles In Wheat, Shoaib Ahmad, Manar Fawzi Bani Mfarrej, Mohamed A. El-Esawi, Muhammad Waseem, Aishah Alatawi, Muhammad Nafees, Muhammad Hamzah Saleem, Muhammad Rizwan, Tahira Yasmeen, Alia Anayat, Shafaqat Ali Jan 2022

Chromium-Resistant Staphylococcus Aureus Alleviates Chromium Toxicity By Developing Synergistic Relationships With Zinc Oxide Nanoparticles In Wheat, Shoaib Ahmad, Manar Fawzi Bani Mfarrej, Mohamed A. El-Esawi, Muhammad Waseem, Aishah Alatawi, Muhammad Nafees, Muhammad Hamzah Saleem, Muhammad Rizwan, Tahira Yasmeen, Alia Anayat, Shafaqat Ali

All Works

Chromium (Cr) is a toxic heavy metal that contaminates soil and water resources after its discharge from different industries. It can act as carcinogen and mutagen for biological systems. Microbe-assisted phytoremediation is one of the most emergent and environment friendly technique used for detoxification of Cr from Cr-contaminated soils. In this study, wheat as a test crop was grown under varying stress levels (0, 50, 100 and 200 mg/kg) of Cr in a pot experiment under a complete randomized design. Alleviative role of Staphylococcus aureus strain K1 was assessed by applying as a treatment in different combinations of zinc oxide …


Towards Plasmon Mapping Of Sers-Active Ag Dewetted Nanostructures Using Spels, Mohamed Beshr, E. Dexter, Paul E. Tierney, Aidan Meade, Shane Murphy, George Amarandei Jan 2022

Towards Plasmon Mapping Of Sers-Active Ag Dewetted Nanostructures Using Spels, Mohamed Beshr, E. Dexter, Paul E. Tierney, Aidan Meade, Shane Murphy, George Amarandei

Articles

Thermal dewetting of silver thin flm can lead to SERS-active Ag nanoparticles. Here, we report our progress towards using scanning probe energy loss spectroscopy (SPELS) to map the plasmonic behaviour of SERS-active Ag nanoparticles (NP) by investigating NPs produced through the dewetting study of Ag thin flms on SiO2/Si and Ti/SiO2/Si substrates. The nanoparticles size and spatial distribution were controlled by the deposition and thermal annealing parameters. The results of preliminary SPELS measurements of these structures, alongside SERS data show that there is a correlation between the Raman enhancement and the nanoparticle size and interparticle spacing.


Spray Deposition Of Sustainable Plant Based Graphene In Thermosetting Carbon Fiber Laminates For Mechanical, Thermal, And Electrical Properties, Daniel W. Mulqueen, Siavash Sattar, Thienan Le, Oleksandr G. Kravchenko Jan 2022

Spray Deposition Of Sustainable Plant Based Graphene In Thermosetting Carbon Fiber Laminates For Mechanical, Thermal, And Electrical Properties, Daniel W. Mulqueen, Siavash Sattar, Thienan Le, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Graphene has generated substantial interest as a filler due to its exceptional strength, flexibility, and conductivity but faces obstacles in supply and implementation. A renewable, plant-based graphene nanoparticle (pGNP) presents a more accessible filler with the same properties as mineral graphenes. In this study, we examine the effects of pGNP, which was sprayed on a carbon fiber/epoxy prepreg at loadings from 1.1 to 4.2 g/m2. The study considered the mechanical, thermal, and electrical properties of pGNP-composite. An even particle dispersion was achieved using a spray application of pGNP in a water/alcohol suspension with the addition of surfactants and …


Novel Hybrid Solar Nanophotonic Distillation Membrane With Photovoltaic Module For Co-Production Of Electricity And Water, Alejandro Espejo Sanchez, Nipun Goel, Todd Otanicar Jan 2022

Novel Hybrid Solar Nanophotonic Distillation Membrane With Photovoltaic Module For Co-Production Of Electricity And Water, Alejandro Espejo Sanchez, Nipun Goel, Todd Otanicar

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Solar energy utilization and desalination are both critical needs for large portions of the world facing energy and water challenges. Direct contact membrane distillation is an attractive thermally driven desalination technique that can easily be integrated with solar energy. Here we propose and experimentally demonstrate for the first time a hybrid direct contact membrane desalination plus photovoltaic device. The system utilizes partially transparent photovoltaic cells to produce electricity and pass thermal energy to the nanoparticle doped membrane to produce thermal energy at the membrane surface. A custom lab-scale direct contact membrane distillation setup characterizes the membranes fabricated off-sun and on-sun. …


Review Of Vegetable Nanolubricants For Tribological Applications, Laura Peña-Parás, Martha Rodríguez-Villalobos, Demófilo Maldonado-Cortés, José Andrés González, Ricardo De Jesús Durán, Javier A. Ortega Jan 2022

Review Of Vegetable Nanolubricants For Tribological Applications, Laura Peña-Parás, Martha Rodríguez-Villalobos, Demófilo Maldonado-Cortés, José Andrés González, Ricardo De Jesús Durán, Javier A. Ortega

Mechanical Engineering Faculty Publications and Presentations

About 40 million tons of lubricants are used every year for various industry purposes and applications, where most of them are petroleum based oils. These oils are difficult and expensive to dispose of, have low biodegradability and are contamination risks. Recent efforts have been focused on reducing the environmental impact of petroleum based lubricants through the use of vegetable oils since they are biodegradable and have good lubricity. A drawback of vegetable oils is their poor thermal stability and oxidation, which causes them to decrease their properties at higher loads. Nanoparticle (NP) additives have been explored for improving the tribological …