Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2020

Graphene

Discipline
Institution
Publication

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Two New Finite Element Schemes And Their Analysis For Modeling Of Wave Propagation In Graphene, Jichun Li Dec 2020

Two New Finite Element Schemes And Their Analysis For Modeling Of Wave Propagation In Graphene, Jichun Li

Mathematical Sciences Faculty Research

© 2020 The Author(s) In this paper, we investigate a system of governing equations for modeling wave propagation in graphene. Compared to our previous work (Yang et al., 2020), here we re-investigate the governing equations by eliminating two auxiliary unknowns from the original model. A totally new stability for the model is established for the first time. Since the finite element scheme proposed in Yang et al. (2020) is only first order in time, here we propose two new schemes with second order convergence in time for the simplified modeling equations. Discrete stabilities inheriting exactly the same form as the …


Carbon Nanotube-On-Graphene Heterostructures, Yu Zheng, Dongmeng Li, Zubair Ahmed, Jeongwon Park, Changjian Zhou, Cary Y. Yang Nov 2020

Carbon Nanotube-On-Graphene Heterostructures, Yu Zheng, Dongmeng Li, Zubair Ahmed, Jeongwon Park, Changjian Zhou, Cary Y. Yang

Electrical and Computer Engineering

This paper presents a brief review of experimental and theoretical studies on a three-dimensional heterostructure consisting of vertical carbon nanotubes (CNTs) connected perpendicularly to a graphene layer. This structure can serve as a potential building block for an all-carbon network in energy storage devices and on-chip interconnects. The review highlights reported works on the fabrication and characterization of such a heterostructure, with focus on the effect of the CNT-graphene interface on electrical conduction. While a direct comparison between experiment and theory is not possible at this time, a brief survey of theoretical efforts based on atomic cluster models nonetheless reveals …


Recent Advances In Graphene-Based Materials For Fuel Cell Applications, Hanrui Su, Yun Hang Hu Oct 2020

Recent Advances In Graphene-Based Materials For Fuel Cell Applications, Hanrui Su, Yun Hang Hu

Michigan Tech Publications

The unique chemical and physical properties of graphene and its derivatives (graphene oxide, heteroatom-doped graphene, and functionalized graphene) have stimulated tremendous efforts and made significant progress in fuel cell applications. This review focuses on the latest advances in the use of graphene-based materials in electrodes, electrolytes, and bipolar plates for fuel cells. The understanding of structure-activity relationships of metal-free heteroatom-doped graphene and graphene-supported catalysts was highlighted. The performances and advantages of graphene-based materials in membranes and bipolar plates were summarized. We also outlined the challenges and perspectives in using graphene-based materials for fuel cell applications.


A Review Of Inkjet Printed Graphene And Carbon Nanotubes Based Gas Sensors, Twinkle Pandhi, Ashita Chandnani, Harish Subbaraman, David Estrada Oct 2020

A Review Of Inkjet Printed Graphene And Carbon Nanotubes Based Gas Sensors, Twinkle Pandhi, Ashita Chandnani, Harish Subbaraman, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Graphene and carbon nanotube (CNT)-based gas/vapor sensors have gained much traction for numerous applications over the last decade due to their excellent sensing performance at ambient conditions. Inkjet printing various forms of graphene (reduced graphene oxide or modified graphene) and CNT (single-wall nanotubes (SWNTs) or multiwall nanotubes (MWNTs)) nanomaterials allows fabrication onto flexible substrates which enable gas sensing applications in flexible electronics. This review focuses on their recent developments and provides an overview of the state-of-the-art in inkjet printing of graphene and CNT based sensors targeting gases, such as NO2, Cl2, CO2, NH3 …


Inkjet-Printed Graphene-Based 1 × 2 Phased Array Antenna, Mahmuda Akter Monne, Peter Mack Grubb, Harold Stern, Harish Subbaraman, Ray T. Chen, Maggie Yihong Chen Sep 2020

Inkjet-Printed Graphene-Based 1 × 2 Phased Array Antenna, Mahmuda Akter Monne, Peter Mack Grubb, Harold Stern, Harish Subbaraman, Ray T. Chen, Maggie Yihong Chen

Electrical and Computer Engineering Faculty Publications and Presentations

Low-cost and conformal phased array antennas (PAAs) on flexible substrates are of particular interest in many applications. The major deterrents to developing flexible PAA systems are the difficulty in integrating antenna and electronics circuits on the flexible surface, as well as the bendability and oxidation rate of radiating elements and electronics circuits. In this research, graphene ink was developed from graphene flakes and used to inkjet print the radiating element and the active channel of field effect transistors (FETs). Bending and oxidation tests were carried out to validate the application of printed flexible graphene thin films in flexible electronics. An …


Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight Aug 2020

Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this dissertation, optical Hall effect (OHE) measurements are used to determine the free charge carrier properties of important two-dimensional materials and monoclinic oxides. Two-dimensional material systems have proven useful in high-frequency electronic devices due to their unique properties, such as high mobility, which arise from their two-dimensional nature. Monoclinic oxides exhibit many desirable characteristics, for example low-crystal symmetry which could lead to anisotropic carrier properties. Here, single-crystal monoclinic gallium oxide, an AlInN/GaN-based high-electron-mobility transistor (HEMT) structure, and epitaxial graphene are studied as examples. To characterize these material systems, the OHE measurement technique is employed. The OHE is a physical …


Synthesis And Characterization Of Free-Stand Graphene/Silver Nanowire/Graphene Nano Composite As Transparent Conductive Film With Enhanced Stiffness, Chuanrui Guo, Yanxiao Li, Yanping Zhu, Chenglin Wu, Genda Chen Jul 2020

Synthesis And Characterization Of Free-Stand Graphene/Silver Nanowire/Graphene Nano Composite As Transparent Conductive Film With Enhanced Stiffness, Chuanrui Guo, Yanxiao Li, Yanping Zhu, Chenglin Wu, Genda Chen

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

As-grown graphene via chemical vapor deposition (CVD) has potential defects, cracks, and disordered grain boundaries induced by the synthesis and transfer process. Graphene/silver nanowire/graphene (Gr/AgNW/Gr) sandwich composite has been proposed to overcome these drawbacks significantly as the AgNW network can provide extra connections on graphene layers to enhance the stiffness and electrical conductivity. However, the existing substrate (polyethylene terephthalate (PET), glass, silicon, and so on) for composite production limits its application and mechanics behavior study. In this work, a vacuum annealing method is proposed and validated to synthesize the free-stand Gr/AgNW/Gr nanocomposite film on transmission electron microscopy (TEM) grids. AgNW …


Synthesis And Characterization Of Free-Stand Graphene/Silver Nanowire/Graphene Nano Composite As Transparent Conductive Film With Enhanced Stiffness, Chuanrui Guo, Yanxiao Li, Yanping Zhu, Chenglin Wu, Genda Chen Jul 2020

Synthesis And Characterization Of Free-Stand Graphene/Silver Nanowire/Graphene Nano Composite As Transparent Conductive Film With Enhanced Stiffness, Chuanrui Guo, Yanxiao Li, Yanping Zhu, Chenglin Wu, Genda Chen

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

As-grown graphene via chemical vapor deposition (CVD) has potential defects, cracks, and disordered grain boundaries induced by the synthesis and transfer process. Graphene/silver nanowire/graphene (Gr/AgNW/Gr) sandwich composite has been proposed to overcome these drawbacks significantly as the AgNW network can provide extra connections on graphene layers to enhance the stiffness and electrical conductivity. However, the existing substrate (polyethylene terephthalate (PET), glass, silicon, and so on) for composite production limits its application and mechanics behavior study. In this work, a vacuum annealing method is proposed and validated to synthesize the free-stand Gr/AgNW/Gr nanocomposite film on transmission electron microscopy (TEM) grids. AgNW …


Tunable Compact Thz Devices Based On Graphene And Other 2d Material Metasurfaces, Tianjing Guo Jul 2020

Tunable Compact Thz Devices Based On Graphene And Other 2d Material Metasurfaces, Tianjing Guo

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Since the isolation of graphene in 2004, a large amount of research has been directed at 2D materials and their applications due to their unique characteristics. Compared with the noble metal plasmons in the visible and near-infrared frequencies, graphene can support surface plasmons in the lower frequencies of terahertz (THz) and midinfrared. Especially, the surface conductivity of graphene can be tuned by either chemical doping or electrostatic gating. As a result, the idea of designing graphene metasurfaces is attractive because of its ultra-broadband response and tunability.

It has been demonstrated theoretically and experimentally that the third-order nonlinearity of graphene at …


Fabrication And Characterization Of Flexible Three-Phase Zno-Graphene-Epoxy Electro-Active Thin-Film Nanocomposites: Towards Applications In Wearable Biomedical Devices, Mandeep Singh, Sanjeev Kumar, Shervin Zoghi, Debaki Sarcar, Saquib Ahmed, Shaestagir Chowdhury, Sankha Banerjee Jul 2020

Fabrication And Characterization Of Flexible Three-Phase Zno-Graphene-Epoxy Electro-Active Thin-Film Nanocomposites: Towards Applications In Wearable Biomedical Devices, Mandeep Singh, Sanjeev Kumar, Shervin Zoghi, Debaki Sarcar, Saquib Ahmed, Shaestagir Chowdhury, Sankha Banerjee

Mechanical and Materials Engineering Faculty Publications and Presentations

Perovskite oxides have been used as sensors, actuators, transducers, for sound generation and detection, and also in optical instruments and microscopes. Perovskite halides are currently considered as optoelectronic devices such as solar cells, photodetectors, and radiation detection, but there are major issues with stability, interfacial recombination, and electron/hole mobility. The following work looks into the fabrication of non-toxic ZnO-based lead-free alternatives to perovskite oxides for use as secondary sensors or electron transport layers along with perovskite halides for application in stacked biomedical wearable devices. Three-phase, lead-free, Zinc Oxide-Graphene-Epoxy electroactive nanocomposite thin films were fabricated. The volume fraction of the Graphene …


Corrosion-Induced Mass Loss Measurement Under Strain Conditions Through Gr/Agnw-Based, Fe-C Coated Lpfg Sensors, Chuanrui Guo, Liang Fan, Genda Chen Mar 2020

Corrosion-Induced Mass Loss Measurement Under Strain Conditions Through Gr/Agnw-Based, Fe-C Coated Lpfg Sensors, Chuanrui Guo, Liang Fan, Genda Chen

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

In this study, graphene/silver nanowire (Gr/AgNW)-based, Fe-C coated long period fiber gratings (LPFG) sensors were tested up to 72 hours in 3.5 w.t% NaCl solution for corrosion-induced mass loss measurement under four strain levels: 0, 500, 1000 and 1500 µ∈. The crack and interfacial bonding behaviors of laminate Fe-C and Gr/AgNW layer structures were characterized using Scanning Electron Microscopy (SEM) and electrical resistance measurement. Both optical transmission spectra and electrical impedance spectroscopy (EIS) data were simultaneously measured from each sensor. Under increasing strains, transverse cracks appeared first and were followed by longitudinal cracks on the laminate layer structures. The spacing …


Confning Tio2 Nanotubes In Pecvd‑Enabled Graphene Capsules Toward Ultrafast K‑Ion Storage: In Situ Tem/Xrd Study And Dft Analysis, Jingsheng Cai, Ran Cai, Zhongti Sun, Xiangguo Wang, Nan Wei, Feng Xu, Yuanlong Shao, Peng Gao, Shi Xue Dou, Jingyu Sun Jan 2020

Confning Tio2 Nanotubes In Pecvd‑Enabled Graphene Capsules Toward Ultrafast K‑Ion Storage: In Situ Tem/Xrd Study And Dft Analysis, Jingsheng Cai, Ran Cai, Zhongti Sun, Xiangguo Wang, Nan Wei, Feng Xu, Yuanlong Shao, Peng Gao, Shi Xue Dou, Jingyu Sun

Australian Institute for Innovative Materials - Papers

© 2020, © 2020, The Author(s). Titanium dioxide (TiO2) has gained burgeoning attention for potassium-ion storage because of its large theoretical capacity, wide availability, and environmental benignity. Nevertheless, the inherently poor conductivity gives rise to its sluggish reaction kinetics and inferior rate capability. Here, we report the direct graphene growth over TiO2 nanotubes by virtue of chemical vapor deposition. Such conformal graphene coatings effectively enhance the conductive environment and well accommodate the volume change of TiO2 upon potassiation/depotassiation. When paired with an activated carbon cathode, the graphene-armored TiO2 nanotubes allow the potassium-ion hybrid capacitor full cells to harvest an energy/power …


Carbon-Based Interlayers In Perovskite Solar Cells, Aleksandr P. Litvin, Xiaoyu Zhang, Kevin Berwick, Anatoly V. Fedorov, Weitao Zheng, Alexander V. Baranov Jan 2020

Carbon-Based Interlayers In Perovskite Solar Cells, Aleksandr P. Litvin, Xiaoyu Zhang, Kevin Berwick, Anatoly V. Fedorov, Weitao Zheng, Alexander V. Baranov

Articles

Perovskites are solution-processed, high-performance semiconductors of interest in low-cost photovoltaics. The interfaces between the perovskite photoactive layers and the top and bottom contacts are crucial for efficient charge transport and minimizing trapping. Control of the collection of charge carriers at these interfaces is decisive to device performance. Here, we review recent progress in the realization of efficient perovskite solar cells using cheap, easily processed, stable, carbon-based interlayers. Interface materials including graphene, carbon nanotubes, fullerenes, graphene quantum dots and carbon dots are introduced and their influence on device performance is discussed.


A Preliminary Study Of A Graphene Fractal Sierpinski Antenna, Alberto Boretti, Lorenzo Rosa, Jonathan Blackledge, Stefania Castelletto Jan 2020

A Preliminary Study Of A Graphene Fractal Sierpinski Antenna, Alberto Boretti, Lorenzo Rosa, Jonathan Blackledge, Stefania Castelletto

Conference papers

We provide a preliminary study of a Graphene fractal antenna operating at THz frequencies with the opportunity to modulate the emission. There are a number of advantages of the fractal design, namely multiband/wideband ability, and, a smaller, lighter and simpler configuration for higher gain, that can benefit from the coupling with Graphene, the thinnest and strongest of materials exhibiting very high electrical conductivity and tunability. This paper proposes a conceptual background for the study and presents some preliminary results on the electromagnetic emission simulations undertaken


Numerical Methods For Electromagnetic Modeling Of Graphene: A Review, Kaikun Niu, Ping Li, Zhixiang Huang, Li (Lijun) Jun Jiang, Hakan Bagci Jan 2020

Numerical Methods For Electromagnetic Modeling Of Graphene: A Review, Kaikun Niu, Ping Li, Zhixiang Huang, Li (Lijun) Jun Jiang, Hakan Bagci

Electrical and Computer Engineering Faculty Research & Creative Works

Graphene's remarkable electrical, mechanical, thermal, and chemical properties have made this the frontier of many other 2-D materials a focus of significant research interest in the last decade. Many theoretical studies of the physical mechanisms behind these properties have been followed by those investing the graphene's practical use in various fields of engineering. Electromagnetics, optics, and photonics are among these fields, where potential benefits of graphene in improving the device/system performance have been studied. These studies are often carried out using simulation tools. To this end, many numerical methods have been developed to characterize electromagnetic field/wave interactions on graphene sheets …


Dealloyed Porous Gold Anchored By: In Situ Generated Graphene Sheets As High Activity Catalyst For Methanol Electro-Oxidation Reaction, Hui Xu, Shuai Liu, Xiaoliang Pu, Kechang Shen, Laichang Zhang, Xiaoguang Wang, Jingyu Qin, Weimin Wang Jan 2020

Dealloyed Porous Gold Anchored By: In Situ Generated Graphene Sheets As High Activity Catalyst For Methanol Electro-Oxidation Reaction, Hui Xu, Shuai Liu, Xiaoliang Pu, Kechang Shen, Laichang Zhang, Xiaoguang Wang, Jingyu Qin, Weimin Wang

Research outputs 2014 to 2021

A novel one-step method to prepare the nanocomposites of reduced graphene oxide (RGO)/nanoporous gold (NPG) is realized by chemically dealloying an Al2Au precursor. The RGO nanosheets anchored on the surface of NPG have a cicada wing like shape and act as both conductive agent and buffer layer to improve the catalytic ability of NPG for methanol electro-oxidation reaction (MOR). This improvement can also be ascribed to the microstructure change of NPG in dealloying with RGO. This work inspires a facile and economic method to prepare the NPG based catalyst for MOR.