Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2020

Deep learning

Discipline
Institution
Publication

Articles 1 - 30 of 30

Full-Text Articles in Engineering

An Efficient Deep-Learning-Based Detection And Classification System For Cyber-Attacks In Iot Communication Networks, Qasem Abu Al-Haija, Saleh Zein-Sabatto Dec 2020

An Efficient Deep-Learning-Based Detection And Classification System For Cyber-Attacks In Iot Communication Networks, Qasem Abu Al-Haija, Saleh Zein-Sabatto

Electrical and Computer Engineering Faculty Research

With the rapid expansion of intelligent resource-constrained devices and high-speed communication technologies, the Internet of Things (IoT) has earned wide recognition as the primary standard for low-power lossy networks (LLNs). Nevertheless, IoT infrastructures are vulnerable to cyber-attacks due to the constraints in computation, storage, and communication capacity of the endpoint devices. From one side, the majority of newly developed cyber-attacks are formed by slightly mutating formerly established cyber-attacks to produce a new attack that tends to be treated as normal traffic through the IoT network. From the other side, the influence of coupling the deep learning techniques with the cybersecurity …


Survey On Deep Neural Networks In Speech And Vision Systems, M. Alam, Manar D. Samad, Lasitha Vidyaratne, ‪Alexander Glandon, Khan M. Iftekharuddin Dec 2020

Survey On Deep Neural Networks In Speech And Vision Systems, M. Alam, Manar D. Samad, Lasitha Vidyaratne, ‪Alexander Glandon, Khan M. Iftekharuddin

Computer Science Faculty Research

This survey presents a review of state-of-the-art deep neural network architectures, algorithms, and systems in speech and vision applications. Recent advances in deep artificial neural network algorithms and architectures have spurred rapid innovation and development of intelligent speech and vision systems. With availability of vast amounts of sensor data and cloud computing for processing and training of deep neural networks, and with increased sophistication in mobile and embedded technology, the next-generation intelligent systems are poised to revolutionize personal and commercial computing. This survey begins by providing background and evolution of some of the most successful deep learning models for intelligent …


A Real-Time And Adaptive-Learning Malware Detection Method Based On Api-Pair Graph, Shaojie Yang, Shanxi Li, Wenbo Chen, Yuhong Liu Nov 2020

A Real-Time And Adaptive-Learning Malware Detection Method Based On Api-Pair Graph, Shaojie Yang, Shanxi Li, Wenbo Chen, Yuhong Liu

Computer Science and Engineering

The detection of malware have developed for many years, and the appearance of new machine learning and deep learning techniques have improved the effect of detectors. However, most of current researches have focused on the general features of malware and ignored the development of the malware themselves, so that the features could be useless with the time passed as well as the advance of malware techniques. Besides, the detection methods based on machine learning are mainly static detection and analysis, while the study of real-time detection of malware is relatively rare. In this article, we proposed a new model that …


A Bibliometric Survey Of Fashion Analysis Using Artificial Intelligence, Seema Wazarkar, Shruti Patil, Satish Kumar Nov 2020

A Bibliometric Survey Of Fashion Analysis Using Artificial Intelligence, Seema Wazarkar, Shruti Patil, Satish Kumar

Library Philosophy and Practice (e-journal)

In the 21st century, clothing fashion has become an inevitable part of every individual human as it is considered a way to express their personality to the outside world. Currently the traditional fashion business models are experiencing a paradigm shift from being an experience-based business strategy implementation to a data driven intelligent business improvisation. Artificial Intelligence is acting as a catalyst to achieve the infusion of data intelligence into the fashion industry which aims at fostering all the business brackets such as supply chain management, trend analysis, fashion recommendation, sales forecasting, digitized shopping experience etc. The field of “Fashion …


Towards Real-Time Reinforcement Learning Control Of A Wave Energy Converter, Enrico Anderlini, Salman Husain, Gordon Parker, Mohammad Abusara, Giles Thomas Nov 2020

Towards Real-Time Reinforcement Learning Control Of A Wave Energy Converter, Enrico Anderlini, Salman Husain, Gordon Parker, Mohammad Abusara, Giles Thomas

Michigan Tech Publications

The levellised cost of energy of wave energy converters (WECs) is not competitive with fossil fuel-powered stations yet. To improve the feasibility of wave energy, it is necessary to develop effective control strategies that maximise energy absorption in mild sea states, whilst limiting motions in high waves. Due to their model-based nature, state-of-the-art control schemes struggle to deal with model uncertainties, adapt to changes in the system dynamics with time, and provide real-time centralised control for large arrays of WECs. Here, an alternative solution is introduced to address these challenges, applying deep reinforcement learning (DRL) to the control of WECs …


A Bibliometric Analysis Of Face Anti Spoofing, Swapnil Ramesh Shinde, Shraddha Phansalkar, Sudeep D. Thepade Oct 2020

A Bibliometric Analysis Of Face Anti Spoofing, Swapnil Ramesh Shinde, Shraddha Phansalkar, Sudeep D. Thepade

Library Philosophy and Practice (e-journal)

Face Recognition Systems are used widely in all areas as a medium of authentication, the ease of implementation and accuracy provides it with a broader scope. The face recognition systems are vulnerable to some extent and are attacked by performing different types of attacks using a variety of techniques. The term used to describe the measures taken to prevent these types of attacks is known as face anti spoofing. Research has been carried on since decades to design systems that are robust against these attacks. The focus of the work in this paper is to explore the area of face …


Exploring The Efficacy Of Transfer Learning In Mining Image‑Based Software Artifacts, Natalie Best, Jordan Ott, Erik J. Linstead Aug 2020

Exploring The Efficacy Of Transfer Learning In Mining Image‑Based Software Artifacts, Natalie Best, Jordan Ott, Erik J. Linstead

Engineering Faculty Articles and Research

Background

Transfer learning allows us to train deep architectures requiring a large number of learned parameters, even if the amount of available data is limited, by leveraging existing models previously trained for another task. In previous attempts to classify image-based software artifacts in the absence of big data, it was noted that standard off-the-shelf deep architectures such as VGG could not be utilized due to their large parameter space and therefore had to be replaced by customized architectures with fewer layers. This proves to be challenging to empirical software engineers who would like to make use of existing architectures without …


Noisy Importance Sampling Actor-Critic: An Off-Policy Actor-Critic With Experience Replay, Miriam A M Capretz, Norman Tasfi Jul 2020

Noisy Importance Sampling Actor-Critic: An Off-Policy Actor-Critic With Experience Replay, Miriam A M Capretz, Norman Tasfi

Electrical and Computer Engineering Publications

This paper presents Noisy Importance Sampling Actor-Critic (NISAC), a set of empirically validated modifications to the advantage actor-critic algorithm (A2C), allowing off-policy reinforcement learning and increased performance. NISAC uses additive action space noise, aggressive truncation of importance sample weights, and large batch sizes. We see that additive noise drastically changes how off-sample experience is weighted for policy updates. The modified algorithm achieves an increase in convergence speed and sample efficiency compared to both the on-policy actor-critic A2C and the importance weighted off-policy actor-critic algorithm. In comparison to state-of-the-art (SOTA) methods, such as actor-critic with experience replay (ACER), NISAC nears the …


A Self Controlled Rdp Approach For Feature Extraction In Online Handwriting Recognition Using Deep Learning, Sukhdeep Singh, Vinod Kumar Chauhan, Elisa H. Barney Smith Jul 2020

A Self Controlled Rdp Approach For Feature Extraction In Online Handwriting Recognition Using Deep Learning, Sukhdeep Singh, Vinod Kumar Chauhan, Elisa H. Barney Smith

Electrical and Computer Engineering Faculty Publications and Presentations

The identification of accurate features is the initial task for benchmarked handwriting recognition. For handwriting recognition, the objective of feature computation is to find those characteristics of a handwritten stroke that depict the class of a stroke and make it separable from the rest of the stroke classes. The present study proposes a feature extraction technique for online handwritten strokes based on a self controlled Ramer-Douglas-Peucker (RDP) algorithm. This novel approach prepares a smaller length feature vector for different shaped online handwritten strokes without preprocessing and without any control parameter to RDP. Thus, it also overcomes the shortcomings of the …


Intelligent Sdn Traffic Classification Using Deep Learning: Deep-Sdn, Ali Malik, Ruairí De Fréin, Mohammed Al-Zeyadi, Javier Andreu-Perez Jun 2020

Intelligent Sdn Traffic Classification Using Deep Learning: Deep-Sdn, Ali Malik, Ruairí De Fréin, Mohammed Al-Zeyadi, Javier Andreu-Perez

Conference papers

Accurate traffic classification is fundamentally important for various network activities such as fine-grained network management and resource utilisation. Port-based approaches, deep packet inspection and machine learning are widely used techniques to classify and analyze network traffic flows. However, over the past several years, the growth of Internet traffic has been explosive due to the greatly increased number of Internet users. Therefore, both port-based and deep packet inspection approaches have become inefficient due to the exponential growth of the Internet applications that incurs high computational cost. The emerging paradigm of software-defined networking has reshaped the network architecture by detaching the control …


Modeling And Simulation Of A Robotic Bridge Inspection System, Md Monirul Karim, Cihan H. Dagli, Ruwen Qin May 2020

Modeling And Simulation Of A Robotic Bridge Inspection System, Md Monirul Karim, Cihan H. Dagli, Ruwen Qin

Engineering Management and Systems Engineering Faculty Research & Creative Works

Inspection and preservation of the aging bridges to extend their service life has been recognized as one of the important tasks of the State Departments of Transportation. Yet manual inspection procedure is not efficient to determine the safety status of the bridges in order to facilitate the implementation of appropriate maintenance. In this paper, a complex model involving a remotely controlled robotic platform is proposed to inspect the safety status of the bridges which will eliminate labor-intensive inspection. Mobile cameras from unmanned airborne vehicles (UAV) are used to collect bridge inspection data in order to record the periodic changes of …


Using Case-Level Context To Classify Cancer Pathology Reports, Shang Gao, Mohammed Alawad, Noah Schaefferkoetter, Lynne Penberthy, Xiao-Cheng Wu, Eric B. Durbin, Linda Coyle, Arvind Ramanathan, Georgia Tourassi May 2020

Using Case-Level Context To Classify Cancer Pathology Reports, Shang Gao, Mohammed Alawad, Noah Schaefferkoetter, Lynne Penberthy, Xiao-Cheng Wu, Eric B. Durbin, Linda Coyle, Arvind Ramanathan, Georgia Tourassi

Kentucky Cancer Registry Faculty Publications

Individual electronic health records (EHRs) and clinical reports are often part of a larger sequence-for example, a single patient may generate multiple reports over the trajectory of a disease. In applications such as cancer pathology reports, it is necessary not only to extract information from individual reports, but also to capture aggregate information regarding the entire cancer case based off case-level context from all reports in the sequence. In this paper, we introduce a simple modular add-on for capturing case-level context that is designed to be compatible with most existing deep learning architectures for text classification on individual reports. We …


Evaluation Of Bridge Decks With Overlays Using Impact Echo, A Deep Learning Approach, Sattar Dorafshan, Hoda Azari May 2020

Evaluation Of Bridge Decks With Overlays Using Impact Echo, A Deep Learning Approach, Sattar Dorafshan, Hoda Azari

Civil Engineering Faculty Publications

In this paper, the feasibility of using deep learning models (DLMs) for evaluation of bridges with overlay systems is investigated. Several laboratory-made concrete specimens with artificial subsurface defects and overlay systems (bonded and debonded) made of cement and asphalt overlay materials were tested using impact echo (IE). One-dimensional (1D) and two-dimensional (2D) convolutional neural networks (CNNs) were developed, trained, and tested on the IE data. The proposed 1D CNN was the most successful in detecting debonding and subsurface defects; it achieved an average accuracy of 0.68 on the cement overlay specimens and 0.58 for asphalt overlay specimens. Maps of the …


Multi-Level-Phase Deep Learning Using Divide-And-Conquer For Scaffolding Safety, Sayan Sakhakarmi, Jee Woong Park Apr 2020

Multi-Level-Phase Deep Learning Using Divide-And-Conquer For Scaffolding Safety, Sayan Sakhakarmi, Jee Woong Park

Civil and Environmental Engineering and Construction Faculty Research

A traditional structural analysis of scaffolding structures requires loading conditions that are only possible during design, but not in operation. Thus, this study proposes a method that can be used during operation to make an automated safety prediction for scaffolds. It implements a divide-and-conquer technique with deep learning. As a test scaffolding, a four-bay, three-story scaffold model was used. Analysis of the model led to 1411 unique safety cases for the model. To apply deep learning, a test simulation generated 1,540,000 datasets for pre-training, and an additional 141,100 datasets for testing purposes. The cases were then sub-divided into 18 categories …


Knowledge Infused Learning (K-Il): Towards Deep Incorporation Of Knowledge In Deep Learning, Ugur Kursuncu, Manas Gaur, Amit Sheth Mar 2020

Knowledge Infused Learning (K-Il): Towards Deep Incorporation Of Knowledge In Deep Learning, Ugur Kursuncu, Manas Gaur, Amit Sheth

Publications

Learning the underlying patterns in data goes beyondinstance-based generalization to external knowledge repre-sented in structured graphs or networks. Deep learning thatprimarily constitutes neural computing stream in AI hasshown significant advances in probabilistically learning la-tent patterns using a multi-layered network of computationalnodes (i.e., neurons/hidden units). Structured knowledge thatunderlies symbolic computing approaches and often supportsreasoning, has also seen significant growth in recent years,in the form of broad-based (e.g., DBPedia, Yago) and do-main, industry or application specific knowledge graphs. Acommon substrate with careful integration of the two willraise opportunities to develop neuro-symbolic learning ap-proaches for AI, where conceptual and probabilistic repre-sentations are combined. …


Learning In The Machine: To Share Or Not To Share?, Jordan Ott, Erik Linstead, Nicholas Lahaye, Pierre Baldi Mar 2020

Learning In The Machine: To Share Or Not To Share?, Jordan Ott, Erik Linstead, Nicholas Lahaye, Pierre Baldi

Engineering Faculty Articles and Research

Weight-sharing is one of the pillars behind Convolutional Neural Networks and their successes. However, in physical neural systems such as the brain, weight-sharing is implausible. This discrepancy raises the fundamental question of whether weight-sharing is necessary. If so, to which degree of precision? If not, what are the alternatives? The goal of this study is to investigate these questions, primarily through simulations where the weight-sharing assumption is relaxed. Taking inspiration from neural circuitry, we explore the use of Free Convolutional Networks and neurons with variable connection patterns. Using Free Convolutional Networks, we show that while weight-sharing is a pragmatic optimization …


Flood Prediction And Uncertainty Estimation Using Deep Learning, Vinayaka Gude, Steven Corns, Suzanna Long Mar 2020

Flood Prediction And Uncertainty Estimation Using Deep Learning, Vinayaka Gude, Steven Corns, Suzanna Long

Engineering Management and Systems Engineering Faculty Research & Creative Works

Floods are a complex phenomenon that are difficult to predict because of their non-linear and dynamic nature. Therefore, flood prediction has been a key research topic in the field of hydrology. Various researchers have approached this problem using different techniques ranging from physical models to image processing, but the accuracy and time steps are not sufficient for all applications. This study explores deep learning techniques for predicting gauge height and evaluating the associated uncertainty. Gauge height data for the Meramec River in Valley Park, Missouri was used to develop and validate the model. It was found that the deep learning …


Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network, Wenyuan Cui, Yunlu Zhang, Xinchang Zhang, Lan Li, Frank W. Liou Jan 2020

Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network, Wenyuan Cui, Yunlu Zhang, Xinchang Zhang, Lan Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Metal additive manufacturing (AM) is gaining increasing attention from academia and industry due to its unique advantages compared to the traditional manufacturing process. Parts quality inspection is playing a crucial role in theAMindustry, which can be adopted for product improvement. However, the traditional inspection process has relied on manual recognition, which could suffer from low efficiency and potential bias. This study presented a convolutional neural network (CNN) approach toward robust AM quality inspection, such as good quality, crack, gas porosity, and lack of fusion. To obtain the appropriate model, experiments were performed on a series of architectures. Moreover, data augmentation …


Coverage Guided Differential Adversarial Testing Of Deep Learning Systems, Jianmin Guo, Houbing Song, Yue Zhao, Yu Jiang Jan 2020

Coverage Guided Differential Adversarial Testing Of Deep Learning Systems, Jianmin Guo, Houbing Song, Yue Zhao, Yu Jiang

Publications

Deep learning is increasingly applied to safety-critical application domains such as autonomous cars and medical devices. It is of significant importance to ensure their reliability and robustness. In this paper, we propose DLFuzz, the coverage guided differential adversarial testing framework to guide deep learing systems exposing incorrect behaviors. DLFuzz keeps minutely mutating the input to maximize the neuron coverage and the prediction difference between the original input and the mutated input, without manual labeling effort or cross-referencing oracles from other systems with the same functionality. We also design multiple novel strategies for neuron selection to improve the neuron coverage. The …


Lm-Based Word Embeddings Improve Biomedical Named Entity Recognition: A Detailed Analysis, Liliya Akhtyamova, John Cardiff Jan 2020

Lm-Based Word Embeddings Improve Biomedical Named Entity Recognition: A Detailed Analysis, Liliya Akhtyamova, John Cardiff

Conference Papers

Recent studies have shown that contextualized word embeddings outperform other types of embeddings on a variety of tasks. However, there is little research done to evaluate their effectiveness in the biomedical domain under multi-task settings. We derive the contextualized word embeddings from the Flair framework and apply them to the task of biomedical NER on 5 benchmark datasets, yielding major improvements over the baseline and achieving competitive results over the current best systems. We analyze the sources of these improvements, reporting model performances over different combinations of word embeddings, and fine-tuning and casing modes.


Deep Learning Towards Intelligent Vehicle Fault Diagnosis, Mohammed Al-Zeyadi, Javier Andreu-Perez, Hani Hagras, Chris Royce, Darren Smith, Piotr Rzonsowski, Ali Malik Jan 2020

Deep Learning Towards Intelligent Vehicle Fault Diagnosis, Mohammed Al-Zeyadi, Javier Andreu-Perez, Hani Hagras, Chris Royce, Darren Smith, Piotr Rzonsowski, Ali Malik

Conference papers

Recently, the rapid development of automotive industries has given rise to large multidimensional datasets both in the production sites and after-sale services. Fault diagnostic systems are one of the services that the automotive industries provide. As a consequence of the rapid development of cars features, traditional rule-based diagnostic systems became very limited. Therefore, more sophisticated AI approaches need to be investigated towards more efficient solutions. In this paper, we focus on utilising deep learning so as to build a diagnostic system that is able to estimate the required services in an efficient and effective way. We propose a new model, …


Perceived Neighborhood: Preferences Versus Actualities, Saeed Moradi, Ali Nejat, Da Hu, Souparno Ghosh Jan 2020

Perceived Neighborhood: Preferences Versus Actualities, Saeed Moradi, Ali Nejat, Da Hu, Souparno Ghosh

Department of Statistics: Faculty Publications

Housing recovery plays a key role in the overall restoration of a community. A multitude of factors affect housing recovery, many of which are associated with interactions of residents with their perceived neighborhoods. Targeting perceived neighborhoods rather than administratively defined measures of land helps with devising recovery plans that could better address social preferences of the residents. However, such measures are commonly subject to collection of information via expensive and time-consuming surveys. The current research aims to contribute to the domain by exploring the relationship between perception of households of their neighborhood anchors (perceived anchors) and the anchors that exist …


Wind Power Forecasting Methods Based On Deep Learning: A Survey, Xing Deng, Haijian Shao, Chunlong Hu, Dengbiao Jiang, Yingtao Jiang Jan 2020

Wind Power Forecasting Methods Based On Deep Learning: A Survey, Xing Deng, Haijian Shao, Chunlong Hu, Dengbiao Jiang, Yingtao Jiang

Electrical & Computer Engineering Faculty Research

Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of …


Enhanced Pml Based On The Long Short Term Memory Network For The Fdtd Method, He Ming Yao, Lijun Jiang Jan 2020

Enhanced Pml Based On The Long Short Term Memory Network For The Fdtd Method, He Ming Yao, Lijun Jiang

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes a new absorbing boundary condition (ABC) computation approach based on the deep learning technique. Benefited from the sequence dependence feature, the Long Short-Term Memory (LSTM) network is employed to replace the conventional perfectly matched layer (PML) ABC for the Finite-Difference Time-Domain (FDTD) solving process. The newly proposed LSTM based PML model is trained by the electromagnetic field data on the interface of the conventional PML. Different from the conventional PML, the newly proposed model only needs one cell layer as the boundary. Hence, the newly proposed method conveniently reduces both the algorithm's complexity and the area of …


Transformer Neural Networks For Automated Story Generation, Kemal Araz Jan 2020

Transformer Neural Networks For Automated Story Generation, Kemal Araz

Dissertations

Towards the last two-decade Artificial Intelligence (AI) proved its use on tasks such as image recognition, natural language processing, automated driving. As discussed in the Moore’s law the computational power increased rapidly over the few decades (Moore, 1965) and made it possible to use the techniques which were computationally expensive. These techniques include Deep Learning (DL) changed the field of AI and outperformed other models in a lot of fields some of which mentioned above. However, in natural language generation especially for creative tasks that needs the artificial intelligent models to have not only a precise understanding of the given …


Improving Transfer Learning For Use In Multi-Spectral Data, Yuvraj Sharma Jan 2020

Improving Transfer Learning For Use In Multi-Spectral Data, Yuvraj Sharma

Dissertations

Recently Nasa as well as the European Space Agency have made observational satellites images public. The main reason behind opening it to public is to foster research among university students and corporations alike. Sentinel is a program by the European Space Agency which has plans to release a series of seven satellites in lower earth orbit for observing land and sea patterns. Recently huge datasets have been made public by the Sentinel program. Many advancements have been made in the field of computer vision in the last decade. Krizhevsky, Sutskever & Hinton, 2012, revolutionized the field of image analysis by …


Quantifying Seagrass Distribution In Coastal Water With Deep Learning Models, Daniel Perez, Kazi Islam, Victoria Hill, Richard Zimmerman, Blake Schaeffer, Yuzhong Shen, Jiang Li Jan 2020

Quantifying Seagrass Distribution In Coastal Water With Deep Learning Models, Daniel Perez, Kazi Islam, Victoria Hill, Richard Zimmerman, Blake Schaeffer, Yuzhong Shen, Jiang Li

OES Faculty Publications

Coastal ecosystems are critically affected by seagrass, both economically and ecologically. However, reliable seagrass distribution information is lacking in nearly all parts of the world because of the excessive costs associated with its assessment. In this paper, we develop two deep learning models for automatic seagrass distribution quantification based on 8-band satellite imagery. Specifically, we implemented a deep capsule network (DCN) and a deep convolutional neural network (CNN) to assess seagrass distribution through regression. The DCN model first determines whether seagrass is presented in the image through classification. Second, if seagrass is presented in the image, it quantifies the seagrass …


On Geometric Design Rules And In-Process Build Quality Monitoring Of Thin-Wall Features Made Using Laser Powder Bed Fusion Additive Manufacturing Process, Aniruddha Gaikwad Jan 2020

On Geometric Design Rules And In-Process Build Quality Monitoring Of Thin-Wall Features Made Using Laser Powder Bed Fusion Additive Manufacturing Process, Aniruddha Gaikwad

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The goal of this thesis is to quantify the link between the design features (geometry), in-process signatures, and build quality of parts made using the laser powder bed fusion (LPBF) additive manufacturing (AM) process. This knowledge is the foundational basis for proposing design rules in AM, as well as for detecting the impending build failures using in-process sensor data.

As a step towards this goal, the objectives of this work are two-fold:

1) Quantify the effect of the geometry and orientation on the build quality of thin-wall features. To explain further, the geometry related factor is the ratio of the …


Deepmag+ : Sniffing Mobile Apps In Magnetic Field Through Deep Learning, Rui Ning, Cong Wang, Chunsheng Xin, Jiang Li, Hongyi Wu Jan 2020

Deepmag+ : Sniffing Mobile Apps In Magnetic Field Through Deep Learning, Rui Ning, Cong Wang, Chunsheng Xin, Jiang Li, Hongyi Wu

Electrical & Computer Engineering Faculty Publications

This paper reports a new side-channel attack to smartphones using the unrestricted magnetic sensor data. We demonstrate that attackers can effectively infer the Apps being used on a smartphone with an accuracy of over 80%, through training a deep Convolutional Neural Networks (CNN). Various signal processing strategies have been studied for feature extractions, including a tempogram based scheme. Moreover, by further exploiting the unrestricted motion sensor to cluster magnetometer data, the sniffing accuracy can increase to as high as 98%. To mitigate such attacks, we propose a noise injection scheme that can effectively reduce the App sniffing accuracy to only …


Vegetation Detection Using Deep Learning And Conventional Methods, Bulent Ayhan, Chiman Kwan, Bence Budavari, Liyun Kwan, Yan Lu, Daniel Perez, Jiang Li, Dimitrios Skarlatos, Marinos Vlachos Jan 2020

Vegetation Detection Using Deep Learning And Conventional Methods, Bulent Ayhan, Chiman Kwan, Bence Budavari, Liyun Kwan, Yan Lu, Daniel Perez, Jiang Li, Dimitrios Skarlatos, Marinos Vlachos

Electrical & Computer Engineering Faculty Publications

Land cover classification with the focus on chlorophyll-rich vegetation detection plays an important role in urban growth monitoring and planning, autonomous navigation, drone mapping, biodiversity conservation, etc. Conventional approaches usually apply the normalized difference vegetation index (NDVI) for vegetation detection. In this paper, we investigate the performance of deep learning and conventional methods for vegetation detection. Two deep learning methods, DeepLabV3+ and our customized convolutional neural network (CNN) were evaluated with respect to their detection performance when training and testing datasets originated from different geographical sites with different image resolutions. A novel object-based vegetation detection approach, which utilizes NDVI, computer …