Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Unmanned Aircraft System (Uas) Technology And Applications In Agriculture, Samuel C. Hassler, Fulya Baysal-Gurel Oct 2019

Unmanned Aircraft System (Uas) Technology And Applications In Agriculture, Samuel C. Hassler, Fulya Baysal-Gurel

Agricultural and Environmental Sciences Faculty Research

Numerous sensors have been developed over time for precision agriculture; though, only recently have these sensors been incorporated into the new realm of unmanned aircraft systems (UAS). This UAS technology has allowed for a more integrated and optimized approach to various farming tasks such as field mapping, plant stress detection, biomass estimation, weed management, inventory counting, and chemical spraying, among others. These systems can be highly specialized depending on the particular goals of the researcher or farmer, yet many aspects of UAS are similar. All systems require an underlying platform—or unmanned aerial vehicle (UAV)—and one or more peripherals and sensing …


A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak Feb 2019

A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak

Faculty Publications

The realization of Internet of Underground Things (IOUT) relies on the establishment of reliable communication links, where the antenna becomes a major design component due to the significant impacts of soil. In this paper, a theoretical model is developed to capture the impacts of change of soil moisture on the return loss, resonant frequency, and bandwidth of a buried dipole antenna. Experiments are conducted in silty clay loam, sandy, and silt loam soil, to characterize the effects of soil, in an indoor testbed and field testbeds. It is shown that at subsurface burial depths (0.1-0.4m), change in soil moisture impacts …


Development And Preliminary Evaluation Of An Integrated Individual Nozzle Direct Injection And Carrier Flow Rate Control System For Pesticide Applications, Joe D. Luck, Scott A. Shearer, Michael P. Sama Jan 2019

Development And Preliminary Evaluation Of An Integrated Individual Nozzle Direct Injection And Carrier Flow Rate Control System For Pesticide Applications, Joe D. Luck, Scott A. Shearer, Michael P. Sama

Biosystems and Agricultural Engineering Faculty Publications

Direct injection systems for agricultural spray applications continue to present challenges in terms of commercialization and adoption by end users. Such systems have typically suffered from lag time and mixing uniformity issues, which have outweighed the potential benefits of keeping chemical and carrier separate or reducing improper tank-mixed concentration by eliminating operator measurements. The proposed system sought to combine high-pressure direct nozzle injection with an automated variable-flow nozzle to improve chemical mixing and response times. The specific objectives were to: (1) integrate a high-pressure direct nozzle injection system with variable-flow carrier control into a prototype for testing, (2) assess the …


Performance Validation Of A Multi-Channel Lidar Sensor: Assessing The Effects Of Target Height And Sensor Velocity On Measurement Error, Surya S. Dasika, Michael P. Sama, L. Felipe Pampolini, Christopher B. Good Jan 2019

Performance Validation Of A Multi-Channel Lidar Sensor: Assessing The Effects Of Target Height And Sensor Velocity On Measurement Error, Surya S. Dasika, Michael P. Sama, L. Felipe Pampolini, Christopher B. Good

Biosystems and Agricultural Engineering Faculty Publications

The objective of this study was to determine the effects of sensor velocity and target height above ground level on height measurement error when using a multi-channel LiDAR sensor. A linear motion system was developed to precisely control the dynamics of the LiDAR sensor in an effort to remove uncertainty in the LiDAR position and velocity while under motion. The linear motion system allowed the LiDAR to translate forward and backward in one direction parallel to the ground. A user control interface was developed to operate the system under different velocity profiles and to log LiDAR data synchronous to the …