Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Assessment Of Different Methods For Shadow Detection In High-Resolution Optical Imagery And Evaluation Of Shadow Impact On Calculation Of Ndvi And Evapotranspiration, Mahyar Aboutalebi, Alfonso F. Torres-Rua, William P. Kustas, Héctor Nieto, Calvin Coopmans, Mac Mckee Dec 2018

Assessment Of Different Methods For Shadow Detection In High-Resolution Optical Imagery And Evaluation Of Shadow Impact On Calculation Of Ndvi And Evapotranspiration, Mahyar Aboutalebi, Alfonso F. Torres-Rua, William P. Kustas, Héctor Nieto, Calvin Coopmans, Mac Mckee

AggieAir Publications

Significant efforts have been made recently in the application of high-resolution remote sensing imagery (i.e., sub-meter) captured by unmanned aerial vehicles (UAVs) for precision agricultural applications for high-value crops such as wine grapes. However, at such high resolution, shadows will appear in the optical imagery effectively reducing the reflectance and emission signal received by imaging sensors. To date, research that evaluates procedures to identify the occurrence of shadows in imagery produced by UAVs is limited. In this study, the performance of four different shadow detection methods used in satellite imagery was evaluated for high-resolution UAV imagery collected over a California …


Variable Rate Irrigation Using A Spatial Evapotranspiration Model With Remote Sensing Imagery And Soil Water Content Measurements, Sandeep Bhatti Dec 2018

Variable Rate Irrigation Using A Spatial Evapotranspiration Model With Remote Sensing Imagery And Soil Water Content Measurements, Sandeep Bhatti

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Variable rate irrigation may help in intensification of agriculture by producing more yield per unit inputs. Real time spatial information about water balance components is important for designing VRI prescription maps. This work involved use of a spatial evapotranspiration model for studying spatial variability in an agricultural field at the Eastern Nebraska Research and Extension Center near Mead, Nebraska. Imagery from unmanned aerial systems and Landsat were used as input for the spatial evapotranspiration model. Other inputs into the model were soil water content measurements from neutron probes, weather data, crop data, previous irrigation prescriptions, and soil properties for the …


Estimating Actual Evapotranspiration From Stony-Soils In Montane Ecosystems, Kshitij Parajuli, Scott B. Jones, David G. Tarboton, Gerald N. Flerchinger, Lawrence E. Hipps, L. Niel Allen, Mark S. Seyfried Nov 2018

Estimating Actual Evapotranspiration From Stony-Soils In Montane Ecosystems, Kshitij Parajuli, Scott B. Jones, David G. Tarboton, Gerald N. Flerchinger, Lawrence E. Hipps, L. Niel Allen, Mark S. Seyfried

Plants, Soils, and Climate Faculty Publications

Quantification of evapotranspiration (ET) is crucial for understanding the water balance and for efficient water resources planning. Agricultural settings have received most attention regarding ET measurements while less knowledge is available for actual ET (ETA) in natural ecosystems, many of which have soils containing significant amounts of stones. This study is focused on modelling ETA from stony soil, particularly in montane ecosystems where we estimate the contribution of stone content on water retention properties in soil. We employed a numerical model (HYDRUS-1D) to simulate ETA in natural settings in northern Utah and southern Idaho during the …


Hydrologic Observation, Model, And Theory Congruence On Evapotranspiration Variance: Diagnosis Of Multiple Observations And Land Surface Models, Ruijie Zeng, Ximing Cai Oct 2018

Hydrologic Observation, Model, And Theory Congruence On Evapotranspiration Variance: Diagnosis Of Multiple Observations And Land Surface Models, Ruijie Zeng, Ximing Cai

Civil and Environmental Engineering Faculty Publications

This paper reconciles the state-of-the-art observations and simulations of evapotranspiration (ET) temporal variability through a diagnostic framework composed of an observation-model-theory triplet. Specifically, a confirmed theoretical tool, Evapotranspiration Temporal VARiance Decomposition (EVARD), is used as a benchmark to estimate ET monthly variance (σ2ET) across the contiguous United States (CONUS) with inputs including hydroclimatic observations, Gravity Recovery and Climate Experiment-based terrestrial water storage, four observation-based products (ETRSUW by the University of Washington, ETRSMOD16 from MOD16 Global Terrestrial ET Data Set, ETFLUXNET upscaled from of fluxtower observations, and ETGLEAM from Global Land Evaporation Amsterdam Model), …


The Grape Remote Sensing Atmospheric Profile And Evapotranspiration Experiment, William P. Kustas, Martha C. Anderson, Joseph G. Alfieri, Kyle Knipper, Alfonso F. Torres-Rua, Christopher K. Parry, Hector Nieto, Nurit Agam, William A. White, Feng Gao, Lynn Mckee, John H. Prueger, Lawrence E. Hipps, Sebastian A. Los, Maria Mar Alsina, Luis Sanchez, Brent Sams, Nick Dokoozlian, Mac Mckee, Scott B. Jones, Yun Yang, Tiffany G. Wilson, Fangni Lei, Andrew Mcelrone, Josh L. Heitman, Adam M. Howard, Kirk Post, Forrest Melton, Christopher Hain Oct 2018

The Grape Remote Sensing Atmospheric Profile And Evapotranspiration Experiment, William P. Kustas, Martha C. Anderson, Joseph G. Alfieri, Kyle Knipper, Alfonso F. Torres-Rua, Christopher K. Parry, Hector Nieto, Nurit Agam, William A. White, Feng Gao, Lynn Mckee, John H. Prueger, Lawrence E. Hipps, Sebastian A. Los, Maria Mar Alsina, Luis Sanchez, Brent Sams, Nick Dokoozlian, Mac Mckee, Scott B. Jones, Yun Yang, Tiffany G. Wilson, Fangni Lei, Andrew Mcelrone, Josh L. Heitman, Adam M. Howard, Kirk Post, Forrest Melton, Christopher Hain

AggieAir Publications

Particularly in light of California’s recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop …


Evaluation Of Tseb Turbulent Fluxes Using Different Methods For The Retrieval Of Soil And Canopy Component Temperatures From Uav Thermal And Multispectral Imagery, Héctor Nieto, William P. Kustas, Alfonso F. Torres-Rúa, Joseph G. Alfieri, Feng Gao, Martha C. Anderson, W. Alex White, Lisheng Song, María Del Mar Alsina, John H. Prueger, Mac Mckee, Manal Elarab, Lynn G. Mckee Sep 2018

Evaluation Of Tseb Turbulent Fluxes Using Different Methods For The Retrieval Of Soil And Canopy Component Temperatures From Uav Thermal And Multispectral Imagery, Héctor Nieto, William P. Kustas, Alfonso F. Torres-Rúa, Joseph G. Alfieri, Feng Gao, Martha C. Anderson, W. Alex White, Lisheng Song, María Del Mar Alsina, John H. Prueger, Mac Mckee, Manal Elarab, Lynn G. Mckee

AggieAir Publications

The thermal-based Two-Source Energy Balance (TSEB) model partitions the evapotranspiration (ET) and energy fluxes from vegetation and soil components providing the capability for estimating soil evaporation (E) and canopy transpiration (T). However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in row crops with wide spacing and strongly clumped vegetation such as vineyards and orchards. To better understand these effects, very high spatial resolution remote-sensing data from …


Integration Of Remote Sensing And Proximal Sensing For Improvement Of Field Scale Water Management, Foad Foolad Jun 2018

Integration Of Remote Sensing And Proximal Sensing For Improvement Of Field Scale Water Management, Foad Foolad

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Water is one of the most precious natural resources, and sustainable water resources development ‎‎is a significant challenge facing water managers over the coming decades. Accurate estimation of ‎‎the different components of the hydrologic cycle is key for water managers and planners in order ‎‎to achieve sustainable water resources development. The primary goal of this dissertation was to ‎investigate techniques to combine datasets acquired by remote and proximal sensing and in-situ ‎sensors for the improvement of monitoring near surface water fluxes. This dissertation is ‎separated into three site-specific case studies. First study, investigated the feasibility of using ‎inverse vadose zone …


Evaluation Of A Hybrid Reflectance-Based Crop Coefficient And Energy Balance Evapotranspiration Model For Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren, Andrew E. Suyker Apr 2018

Evaluation Of A Hybrid Reflectance-Based Crop Coefficient And Energy Balance Evapotranspiration Model For Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren, Andrew E. Suyker

Biological Systems Engineering: Papers and Publications

Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (Kcbrf) and a two-source energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, as in the original model formulations. We also used the …


Evaluation Of Variable Rate Irrigation Using A Remote-Sensing-Based Model, John Burdette Barker, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick Jan 2018

Evaluation Of Variable Rate Irrigation Using A Remote-Sensing-Based Model, John Burdette Barker, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick

Biological Systems Engineering: Papers and Publications

Improvements in soil water balance modeling can be beneficial for optimizing irrigation management to account for spatial variability in soil properties and evapotranspiration (ET). A remote-sensing-based ET and water balance model was tested for irrigation management in an experiment at two University of Nebraska-Lincoln research sites located near Mead and Brule, Nebraska. Both fields included a center pivot equipped with variable rate irrigation (VRI). The study included maize in 2015 and 2016 and soybean in 2016 at Mead, and maize in 2016 at Brule, for a total of 210 plot-years. Four irrigation treatments were applied at Mead, including: VRI based …


Crop Evapotranspiration, Irrigationwater Requirement And Water Productivity Of Maize From Meteorological Data Under Semiarid Climate, Koffi Djaman, Michael O'Neill, Curtis K. Owen, Daniel Smeal, Komlan Koudahe, Margaret West, Samuel Allen, Kevin Lombard, Suat Irmak Jan 2018

Crop Evapotranspiration, Irrigationwater Requirement And Water Productivity Of Maize From Meteorological Data Under Semiarid Climate, Koffi Djaman, Michael O'Neill, Curtis K. Owen, Daniel Smeal, Komlan Koudahe, Margaret West, Samuel Allen, Kevin Lombard, Suat Irmak

Biological Systems Engineering: Papers and Publications

Under the semiarid climate of the Southwest United States, accurate estimation of crop water use is important for water management and planning under conservation agriculture. The objectives of this study were to estimate maize water use and water productivity in the Four Corners region of New Mexico. Maize was grown under full irrigation during the 2011, 2012, 2013, 2014 and 2017 seasons at the Agricultural Science Center at Farmington (NM). Seasonal amounts of applied irrigation varied from 576.6 to 1051.6 mm and averaged 837.7 mm and the total water supply varied from 693.4 to 1140.5 mm. Maize actual evapotranspiration was …