Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

On Uav Robust Nonlinear Control In Presence Of Parametric Uncertainties, Vladimir V. Golubev, William Mackunis Sep 2014

On Uav Robust Nonlinear Control In Presence Of Parametric Uncertainties, Vladimir V. Golubev, William Mackunis

Publications

We examine a new robust nonlinear flight control technology that employs an array of synthetic-jet micro-actuators embedded in UAV wing design in order to completely eliminate moving parts (such as ailerons) thus greatly enhancing maneuverability required for small fixed-wing air vehicles operating, e.g., in tight urban environments. Estimated fast response times are critical in mitigating gust effects while greatly improving flight stability and control. The new controller design is particularly advantageous for high levels of uncertainty and nonlinearity present both in the unsteady flowpath environment and in the embedded actuator’s response. The current work focuses on a benchmark case of …


Invariant Inferring And Monitoring In Robotic Systems, Hengle Jiang Jul 2014

Invariant Inferring And Monitoring In Robotic Systems, Hengle Jiang

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

System monitoring can help to detect abnormalities and avoid failures. Crafting monitors for today’s robotic systems, however, can be very difficult due to the systems’ inherent complexity and its rich operating environment.

In this work we address this challenge through an approach that automatically infers system invariants and synthesizes those invariants into monitors. This approach is inspired by existing software engineering approaches for automated invariant inference, and it is novel in that it derives invariants by observing the messages passed between system nodes and the invariants types are tailored to match the spatial, time, temporal, and architectural attributes of robotic …


Analysis, Optimization, And Implementation Of A Uav-Based Wireless Power Transfer System, Andrew Mittleider May 2014

Analysis, Optimization, And Implementation Of A Uav-Based Wireless Power Transfer System, Andrew Mittleider

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Wireless power transfer is rapidly advancing in its ability to efficiently transfer power to a variety of devices.

As the efficiency increases, more applications for these systems arise. Since magnetic resonant wireless power transfer can only transfer a small amount of power, most current applications only focus on powering low-powered devices.

Wireless Sensor Networks are composed of many low-powered nodes which currently require human interaction to remain powered. We propose recharging a low-powered Wireless Sensor Network (WSN) with a magnetic resonant wireless power transfer system attached to a quadrotor Unmanned Aerial Vehicle (UAV).

This thesis addresses three main challenges with …


Using A Uav To Effectively Prolong Wireless Sensor Network Lifetime With Wireless Power Transfer, Jinfu Leng May 2014

Using A Uav To Effectively Prolong Wireless Sensor Network Lifetime With Wireless Power Transfer, Jinfu Leng

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Wireless sensor networks are widely used for everything from border security to monitoring waterway pollution. Supplying energy for long term deployment is a main challenge in the applications of wireless sensor networks, as batteries are the primary energy source. Current wireless sensor networks deployed for long periods either require additional infrastructure, such as solar panels, or periodic maintenance. Our research lab has proposed a novel solution that uses a micro unmanned aerial vehicle (UAV) to wirelessly charge the sensor nodes and prolong the sensor network lifetime. Recent studies have shown that significant power can be transferred wirelessly over medium distances. …


Autonomous Aerial Water Sampling, John-Paul W. Ore Apr 2014

Autonomous Aerial Water Sampling, John-Paul W. Ore

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Obtaining spatially separated, high frequency water samples from rivers and lakes is critical to enhance our understanding and effective management of fresh water resources. In this thesis we present an aerial water sampler and verify the system in field experiments. The aerial water sampler has the potential to vastly increase the speed and range at which scientists obtain water samples while reducing cost and effort. The water sampling system includes: 1) a mechanism to capture three 20 ml samples per mission; 2) sensors and algorithms for safe navigation and altitude approximation over water; and 3) software components that integrate and …


Low Speed Re-Fuelling Of Unmanned Aerial Vehicles Using The Drogue System, Ian R. Mcandrew, Elena Navarro Mar 2014

Low Speed Re-Fuelling Of Unmanned Aerial Vehicles Using The Drogue System, Ian R. Mcandrew, Elena Navarro

Publications

Unmanned Aerial Vehicles (UAV) are being required to be used in more and more complex situations with larger payloads for extended periods of time. Increasing the expectations and operating ceiling requires increased amounts fuel, that thus limits the potential payloads. This dichotomy has led to the quest for more fuel efficient UAVs; however, when designs are improved then their expectations are increased further. In manned aircraft this can be achieved by in-flight re-fuelling. This research is focused on the process of re-fuelling a UAV at low speeds and the aerodynamics considerations and problems it potentially brings. Practical conclusions to these …