Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Glucose Oxidase (God)-Coupled Amperometric Microsensor With Integrated Electrochemical Actuation System, Jongwon Park, Chang-Soo Kim, Minsu Choi, Shanrui Zhang May 2005

Glucose Oxidase (God)-Coupled Amperometric Microsensor With Integrated Electrochemical Actuation System, Jongwon Park, Chang-Soo Kim, Minsu Choi, Shanrui Zhang

Electrical and Computer Engineering Faculty Research & Creative Works

Recent developments for biosensors have been mainly focused on miniaturization and exploratory use of new materials. It should be emphasized that the absence of a novel "in-situ self-calibration/diagnosis technique" that is not connected to an external apparatus is a key obstacle to the realization of a biosensor for continuous use with minimum attendance. In order to address this issue, a novel solid-state glucose oxidase-coupled amperometric biosensor with integrated electrochemical actuation system has been designed and validated. There are two key components of the proposed glucose biosensor: solid-state GOD-coupled thin-lm amperometric sensing element and O2 depleting/saturating built-in electrochemical actuator. The …


Influence Of Oxygen Microenvironment On Microfluidic Glucose Sensor Performance, Chang-Soo Kim, Jongwon Park Jan 2005

Influence Of Oxygen Microenvironment On Microfluidic Glucose Sensor Performance, Chang-Soo Kim, Jongwon Park

Electrical and Computer Engineering Faculty Research & Creative Works

We propose a novel method to overcome significant problems of baseline drift and sensitivity degradation in amperometric biosensors based on oxidase enzyme reactions. A novel glucose microsensor with a built-in electrochemical oxygen manipulation microsystem is introduced to demonstrate three novel functionalities; one-point in situ self-calibration (zero-point), broadening of dynamic range and increase in sensitivity. The influence of electrochemically generated oxygen microenvironment on the sensor output within a fluidic structure is investigated.


An Efficient Method For Supporting Multiple Types Of Services On Smart Server, Chang-Soo Kim, Yu-Hyeon Bak, Seung-Joe Bae, Jin-Mee Kim, Sang-Min Woo, Seung-Hyup Jeon, Won-Jae Lee, Hag-Young Kim Jan 2005

An Efficient Method For Supporting Multiple Types Of Services On Smart Server, Chang-Soo Kim, Yu-Hyeon Bak, Seung-Joe Bae, Jin-Mee Kim, Sang-Min Woo, Seung-Hyup Jeon, Won-Jae Lee, Hag-Young Kim

Electrical and Computer Engineering Faculty Research & Creative Works

No abstract provided.


A New Microsensor System For Plant Root Zone Monitoring, Chang-Soo Kim, Sandeep Sathyan, D. M. Porterfield Jan 2005

A New Microsensor System For Plant Root Zone Monitoring, Chang-Soo Kim, Sandeep Sathyan, D. M. Porterfield

Electrical and Computer Engineering Faculty Research & Creative Works

The objective of this work is to develop a new microsensor system that can monitor dissolved oxygen and hydration environment at the plant root zone. A miniaturized plant growth system is prepared including the root zone layer, either a porous ceramic tube or porous ceramic wafer on which the plant is grown, and an underlying fluidic channel to deliver nutrients and water to the root zone. We demonstrate the feasibility of using a flexible microsensor array for dissolved oxygen detection, and a four-electrode impedance microelectrode for wetness detection on the surface of a porous tube nutrient delivery system. The unique …